matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFunktionalanalysisvereinfachtes Newtonverfahren
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Funktionalanalysis" - vereinfachtes Newtonverfahren
vereinfachtes Newtonverfahren < Funktionalanalysis < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionalanalysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

vereinfachtes Newtonverfahren: Anwendung
Status: (Frage) beantwortet Status 
Datum: 20:57 Mo 10.03.2008
Autor: jumape

Aufgabe
Wie funktioniert das vereinfachte Newtonverfahren

Also meine Frage ist eigentlich schon die Aufgabe. Man wendet dieses Verfahren doch an, wenn man die Matrix nicht invertieren will und nimmt dann [mm] \overline{x} [/mm]
und [mm] x_{i+1}=x_{i}+(f'(\overline{x}))^{-1}(y-f(x_{i})) [/mm]
Aber wie wählt man da das [mm] \overline{x} [/mm] und nach welcher Variablen leitet man da ab?

        
Bezug
vereinfachtes Newtonverfahren: Antwort
Status: (Antwort) fertig Status 
Datum: 19:00 Sa 15.03.2008
Autor: leduart

Hallo
Die Frage versteh ich nicht ganz:
Das Newtonverfahren nimmt man um Nullstellen von fkt zu finden.
was du hingeschrieben hast, hat für mich nichts mit Matrizen zu tun.
Ausserdem seh ich keinen Zusammenhang mit Funktionalanalysis.
Das vereinfachte Newtonverfahren, heisst einfach, dass man über ein paar Schritte des Newtonverfahrens mit einer festen Tangentensteigung rechnet ( wohl an deiner Stelle xquer)
Kannst du sagen, was du hierbei mit Matrix willst?
Gruss leduart

Bezug
                
Bezug
vereinfachtes Newtonverfahren: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:16 Di 18.03.2008
Autor: jumape

Aufgabe
Wie funktioniert das vereinfachte Newtonverfahren in höheren Dimensionen?

Es geht hier um das Newtonverfahren in höheren Dimensionen. Wenn man also eine Funktion von [mm] \IR [/mm] nach [mm] \IR [/mm] hat. Dann ist diese Matrix die Nablamatrix  von f. [mm] x^{i+1}=x^{i}+(nabla f(x^{i}))^{-1} (y-f(x^{i}) [/mm]

Bezug
                        
Bezug
vereinfachtes Newtonverfahren: Antwort
Status: (Antwort) fertig Status 
Datum: 20:55 Di 18.03.2008
Autor: zahllos

Hallo,

ich bin mir nicht ganz sicher, ob ich deine Frage richtig verstanden habe:

Beim Newtonverfahren berechnet man eine lineare Approximation der Funktion f an der Stelle  [mm] x_i [/mm]  : l(x) = [mm] f(x_i)+\nabla f(x_i)(x-x_i) [/mm]
Setzt man diese gleich 0 so erhält man daraus die nächste Näherung für eine Nullstelle der Funktion f: [mm] x_{i+1}=x_i-(\nabla f(x_i))^{-1}f(x_i) [/mm]

In der Praxis berechnet man nicht [mm] (\nabla f(x_i))^{-1} [/mm] sondern setzt
[mm] x_{i+1}=x_i-\lambda_i v_i [/mm]  wobei die Schrittweite [mm] \lambda_i [/mm] eine reelle Zahl und [mm] v_i [/mm] die Lösung des linearen Gleichungssystems [mm] \nabla f(x_i) v_i [/mm] = [mm] f(x_i) [/mm] ist (zur Bestimmung einer geeigneten Schrittweite gibt es noch gesonderte Überlegungen).

Beim vereinfachten Newton-Verfahren wird die Matrix [mm] \nabla f(x_i) [/mm] nicht in jedem Schritt neu berechnet (denn das wäre sehr aufwendig), sondern über mehrere Iterationen hinweg beibehalten, oder es wird die Matrix [mm] \nabla f(x_i) [/mm]  einmal berechnet und dann mittels sogenannter Update-Formeln von Iteration zu Iteration angepasst.

Insgesamt gibt es eine Vielzahl von Verfahren, die an das Newton-Verfahren angelehnt sind.

Hilft dir das weiter?

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionalanalysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]