matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare Algebravektorraum und lin abbild
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Uni-Lineare Algebra" - vektorraum und lin abbild
vektorraum und lin abbild < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

vektorraum und lin abbild: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 04:07 Do 11.01.2007
Autor: toggit

Aufgabe
Zeigen Sie, dass
U ={f : [0; 1] [mm] \to\IR| [/mm] f ist zwei Mal differenzierbar auf dem Interval [0; 1] und f'' ist stetig}
ein [mm] \IR-Vektorraum [/mm] ist (bzgl. gewöhnlicher Skalarmultiplikation und Addition von Funktionen).
Entscheiden Sie nun, ob folgende Aussagen wahr oder falsch sind:
a) Die Teilmenge V [mm] \subset [/mm] U gegeben durch
V = [mm] {f\inU |f(1) = f(0) = 1} [/mm]
ist ein Untervektorraum von U.
b) Die Teilmenge W [mm] \subsetU [/mm] gegeben durch
W = {f [mm] \in [/mm] U| f(1) = f(0)}
ist ein Untervektorraum von U.
c) Für jedes Tripel [mm] (\alpha;\beta;\gamma) \in R^{3} [/mm] und jedes x [mm] \in [/mm] [0; 1] defniert
$ Phi| $: [mm] U\to \IR, f\mapsto \alpha [/mm] f(x) + [mm] \beta [/mm] f'(x) +
[mm] \gamma [/mm] f''(x)
eine [mm] \IR-lineare [/mm] Abbildung.
d) Für jedes Tripel [mm] (\alpha;\beta;\gamma) \in R^{3} [/mm] und jedes [mm] x\in [/mm] [0; 1] ist
X = [mm] {f\in U|\alpha f(x) + \beta f'(x) + \gamma f''(x) = 0} [/mm]
ein Untervektorraum von U.

hallo
habe nicht dem blosen schimmel wie ich beweisen kann das U ein vektorraum ist!!!
soll ich jede vektorraumaxiom prüfen? (wie prüfe ich den differenzierbarkeit und existenz von f'' ?)
kann mir jemand weiter helfen?
mfg toggit

        
Bezug
vektorraum und lin abbild: Antwort
Status: (Antwort) fertig Status 
Datum: 09:46 Do 11.01.2007
Autor: mathiash

Hallo und guten Tag,

U ist ein Vektorraum, da es eine Teilmenge von [mm] M=\{f\: |\: f\colon [0,1]\to\IR\} [/mm] ist, die abgeschlossen unter Addition und
skalarer Multiplikation ist (d.h.  Du musst wissen oder zeigen durch explizites Beweisen der Gültigkeit aller
Vektorraumaxiome, dass M ein [mm] \IR-Vektorraum [/mm] ist, dann verbleibt es noch zu zeigen, daß mit [mm] f,g\in [/mm] U und [mm] \lambda\in\IR [/mm] auch die Funktionen [mm] \lambda\cdot [/mm] f und f+g in U sind).

Zu (a): Wenn f(1)=g(1)=1, so ist (f+g)(1)=f(1)+g(1)=2.

Zu (b): Ist Untervektorraum (zeige wiederum Abgeschlossenheit unter Addition und skalarer Mult.).

Zu (c): Das liegt daran, daß  (f+g)'=f'+g' und damit auch (f+g)''=f''+g''.

(d) schaffst Du dann schon selber.

Gruss,

Mathias

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]