matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - Moduln und Vektorräumevektorraum der folgen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Lineare Algebra - Moduln und Vektorräume" - vektorraum der folgen
vektorraum der folgen < Moduln/Vektorraum < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

vektorraum der folgen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:54 Sa 27.03.2010
Autor: s-jojo

Aufgabe
Def.: Menge [mm] K^M:=Abb(M,K) [/mm] aller Abb. g: [mm] M\to [/mm] K von M in einem Körper K ist Vektorraum mit + und *

[mm] M=\IN=K^{\IN} [/mm] ist Vektorraum d. Folgen über K
[mm] a\in K^{\IN},also (a1,a2,a3,...):(a_{n})_{n\in\IN} [/mm] mit [mm] a_{n}\in [/mm] K

Hi :)

Könntet ihr mir vielleicht ein Beispiel für so einen Vektorraum geben? Ich kann mir darunter gar nichts vorstellen.

Das mit dem Standardvektorraum versteh ich z.B., weil ich weiß, dass da nur die Standardvektoren wie [mm] \vektor{1 \\ 0\\0},\vektor{0 \\ 1\\0} [/mm] drin sind, aber was ist der Vektorraum der Folgen ?

Gruß,
s-jojo

        
Bezug
vektorraum der folgen: Antwort
Status: (Antwort) fertig Status 
Datum: 11:14 Sa 27.03.2010
Autor: angela.h.b.


> Def.: Menge [mm]K^M:=Abb(M,K)[/mm] aller Abb. g: [mm]M\to[/mm] K von M in
> einem Körper K ist Vektorraum mit + und *

Hallo,

es sehr wichtig, daß Dir die beiden Vernüpfungen + und [mm] \* [/mm] klar sind.
Definitionen angucken und nicht vergessen, Du wirst sie ständig brauchen.

>  
> [mm]M=\IN=K^{\IN}[/mm] ist Vektorraum d. Folgen über K
>  [mm]a\in K^{\IN},also (a1,a2,a3,...):(a_{n})_{n\in\IN}[/mm] mit
> [mm]a_{n}\in[/mm] K

Nehmen wir [mm] K:=\IR. [/mm]

Dann ist [mm] \IR^{\IN} [/mm] der Vektorraum der reellen Folgen, denn reelle Folgen sind ja Abbildungen aus den natürlichen Zahlen in die reellen Zahlen.
Damit hast Du ein Beispiel.

Die Verwandschaft zu den wohlbekannten Vektorräumen [mm] \IR^n [/mm] wird Dir klar,
wenn Du die Folgen als  unendliche Tupel schreibst, z.B.  [mm] c:=(c_n):=( [/mm] 3,5,1,6,0,0,7,4711, 14,2,5,7,...).
(Dies ist ein völlig willkürliches Beispiel für irgendeine Folge. Du mußt nicht drüber grübeln, wie sie weitergeht.)

Über die Addition von Folgen und die Multiplikation mit reellen Zahlen hast Du in der Analysis was gelernt:

[mm] (a_n)+(b_n)=(a_n+b_n) [/mm]  , in Worten: zwei Folgen werden elementweise addiert,

[mm] r*(a_n):=(ra_n), [/mm] Folgen werden elementweise mit reellen zahlen multipliziert,

und Du könntest nun überprüfen, ob dies zu den (oben nicht angegebenen) Definitionen von + und * im Vektorraum der Abbildungen von [mm] \IN [/mm] nach [mm] \IR [/mm] paßt.

Bedenke, daß [mm] a:=(a_1, a_2, a_3, [/mm] ...) steht für a:=(a(1), a(2), a(3),...).

Es ist dies eine spezielle Art, die Abbildung a anzugeben, welche so aufzählend natürlich bei Funktionen, deren Definitionsbereich [mm] \IR [/mm] ist, nicht klappen kann.

Gruß v. Angela


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]