matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGeraden und Ebenenvektorielle geometrie
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Geraden und Ebenen" - vektorielle geometrie
vektorielle geometrie < Geraden und Ebenen < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Geraden und Ebenen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

vektorielle geometrie: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:42 Mi 09.07.2014
Autor: JXner

Aufgabe
In einem Koordinatensystem beschreibt die x1x2-Ebene eine Flache Landschaft. Zwei Flugzeuge F1 und F2 fliegen jeweils mit konstanter Geschwindigkeit auf Geradem Kurs.
Flugzeug 1 befindert sich zum Zeitpunkt t=0(in Minuten) im Punkt P1(0|0|1) und Flugzeug F2 im Punkt Q1(0|0|4). Nach einer Minute hat Flugzeug F1 die Position P2(0|8|5), Flugzeug F2 hat due Position Q2(-1|5|6)erreicht
(Koordinatenangaben in km).

Wann befinden sich F1 und F2 auf gleicher Höhe ?

Ich habe die Geradengleichungen für die beiden Flugzeugen schon aufgestellt, für F1 habe ich:
g: x=(0|0|1)+r*(0|8|4)

und für F2 habe ich:
h: x=(0|0|4)+s*(-1|5|2)

Da sich die beiden Geraden nicht schneiden, fehlt mir der Lösungsansatz, wie ich herausfinde, wann sie auf gleicher Höhe sind.
Daher meine Frage, mit welchem Lösungsansatz bekomme ich heraus wann die beiden sich auf der selben Höhe (also x3) befinden ?



        
Bezug
vektorielle geometrie: Antwort
Status: (Antwort) fertig Status 
Datum: 19:54 Mi 09.07.2014
Autor: Richie1401

Ja Hallo erstmal,

> In einem Koordinatensystem beschreibt die x1x2-Ebene eine
> Flache Landschaft. Zwei Flugzeuge F1 und F2 fliegen jeweils
> mit konstanter Geschwindigkeit auf Geradem Kurs.
>  Flugzeug 1 befindert sich zum Zeitpunkt t=0(in Minuten) im
> Punkt P1(0|0|1) und Flugzeug F2 im Punkt Q1(0|0|4). Nach
> einer Minute hat Flugzeug F1 die Position P2(0|8|5),
> Flugzeug F2 hat due Position Q2(-1|5|6)erreicht
>  (Koordinatenangaben in km).
>  
> Wann befinden sich F1 und F2 auf gleicher Höhe ?
>  Ich habe die Geradengleichungen für die beiden Flugzeugen
> schon aufgestellt, für F1 habe ich:

Das ist lobenswert, doch nun überlegen wir uns erst einmal, was überhaupt gewollt ist.

Wir suchen die Zeit, wo beide Flugzeuge die identische Höhe haben, d.h. also, wenn [mm] z_1=z_2 [/mm] (die Indizes bezecihnen die Flugzeuge). Die Koordinaten x und y interessieren uns überhaupt nicht.

Nun schauen wir mal:

Starthöhe Flugzeug 1: [mm] z_{s1}=1km [/mm]
Endhöhe Flugzeug 1: [mm] z_{e1}=5km [/mm]


Starthöhe Flugzeug 2: [mm] z_{s2}=4km [/mm]
Endhöhe Flugzeug 2: [mm] z_{e2}=6km [/mm]


Was sehen wir also:
Steiggeschwindigkeit Flugzeug 1: [mm] 4\frac{km}{min} [/mm]
Steiggeschwindigkeit Flugzeug 2: [mm] 2\frac{km}{min} [/mm]

Wir stellen dies nun als lineare Funktionen dar
[mm] h_i(t) [/mm] beschreibt dabei die Höhe des entsprechenden Flugzeugs pro t Minuten

   [mm] h_1(t)=4\frac{km}{min}t+1km [/mm]
   [mm] h_2(t)=2\frac{km}{min}t+4km [/mm]


Nun erinnere dich, was wir wissen wollten: Wann ist [mm] h_1=h_2. [/mm]

UNd das ist elementare Mathematik aus der Sekundarstufe. Bei eventuellen Rückfragen: Bitte einfach wieder hier melden.


Liebe Grüße



> g: x=(0|0|1)+r*(0|8|4)
>  
> und für F2 habe ich:
>  h: x=(0|0|4)+s*(-1|5|2)
>  
> Da sich die beiden Geraden nicht schneiden, fehlt mir der
> Lösungsansatz, wie ich herausfinde, wann sie auf gleicher
> Höhe sind.
>  Daher meine Frage, mit welchem Lösungsansatz bekomme ich
> heraus wann die beiden sich auf der selben Höhe (also x3)
> befinden ?
>  
>  


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Geraden und Ebenen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]