matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenReelle Analysis mehrerer Veränderlichenvektorgradient
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Reelle Analysis mehrerer Veränderlichen" - vektorgradient
vektorgradient < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

vektorgradient: produk-/kettenregel gradienten
Status: (Frage) beantwortet Status 
Datum: 18:08 Mi 11.12.2019
Autor: nadrosch

Aufgabe
Seien f:Rn→R und g:Rn→R \ {0} differenzierbar. Zeigen Sie
grad~x(f/g)=(g(~x)*grad~x(f)−f(~x) grad~x(g)) / g2(~x)
für alle~x∈Rn.

Ich weiß, dass ich bei dieser Aufgabe Ketten und oder Produktregel für gradienten anwenden muss
z.B. grad(f/g)
Kettenregel:
h(t)=t/g  h'(t)=1/g=g^-1

grad(h°f)= h'(f(x))*grad(f(x)) da h' nicht von t abhängt und somit auch nicht von f(x) weiß ich nicht weiter

Aus dem angegebenen Ergebniss würde ich auch vermuten das die Produktregel anwendung findet also grad(f * 1/g)= An dieser stelle komme ich nicht weiter durch das 1/g.

Wäre für einen Tipp sehr dankbar.
MFG
nadrosch

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
vektorgradient: Antwort
Status: (Antwort) fertig Status 
Datum: 07:05 Do 12.12.2019
Autor: fred97


> Seien f:Rn→R und g:Rn→R \ {0} differenzierbar. Zeigen
> Sie
>  grad~x(f/g)=(g(~x)*grad~x(f)−f(~x) grad~x(g)) / g2(~x)
>  für alle~x∈Rn.



Puuh, das ist schwer zu lesen... Ich vermute, dass mit ~x  der Vektor [mm] \vec{x} [/mm] gemeint ist.  In meinen Ausführungen weiter unten lasse ich den (bekloppten) Pfeil weg und schreibe nur x statt [mm] \vec{x}. [/mm]



>  Ich weiß, dass ich bei dieser Aufgabe Ketten und oder
> Produktregel für gradienten anwenden muss
>  z.B. grad(f/g)
>  Kettenregel:
>  h(t)=t/g  h'(t)=1/g=g^-1
>  
> grad(h°f)= h'(f(x))*grad(f(x)) da h' nicht von t abhängt
> und somit auch nicht von f(x) weiß ich nicht weiter
>  
> Aus dem angegebenen Ergebniss würde ich auch vermuten das
> die Produktregel anwendung findet also grad(f * 1/g)= An
> dieser stelle komme ich nicht weiter durch das 1/g.
>  
> Wäre für einen Tipp sehr dankbar.

Es geht ganz einfach mit der Quotientenregel für Funktionen einer Variablen und etwas Vektorrechnung:

Setzen wir $h:= [mm] \frac{f}{g}.$ [/mm] Dann ist

       $ [mm] (\star) \quad grad_x h(x)=(h_{x_1}(x),...., h_{x_n}(x))^T.$ [/mm]


Die partielle Ableitung [mm] h_{x_i} [/mm] bekommt man mit der Produktregel für Funktionen einer Variablen:

      $ [mm] h_{x_i}(x)= \frac{g(x)f_{x_i}(x)-f(x)g_{x_i}(x)}{g(x)^2}.$ [/mm]

Nun setze dies in [mm] $(\star)$ [/mm] ein, fasse noch etwas zusammen, dann solltest Du das gewünschte Resultat erhalten.


>  MFG
>  nadrosch
>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]