matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenPhysikvan der Waals
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Physik" - van der Waals
van der Waals < Physik < Naturwiss. < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Physik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

van der Waals: kritischer Punkt->a,b bestimme
Status: (Frage) beantwortet Status 
Datum: 22:32 Mi 08.08.2007
Autor: benevonmattheis

Aufgabe
Leiten Sie [mm] a=\bruch{27}{64} \bruch{(R*T)²}{p} [/mm] und [mm] b=\bruch{1}{8} \bruch{R*T}{p} [/mm] aus der van-der-Waals-schen Zustandsgleichung für reale Gase her.

Mein Ansatz:
[mm] p=\bruch{nRT}{V-nb}-\bruch{n²a}{V²} [/mm]

[mm] dp/dV=\bruch{2an²}{V³}-\bruch{nRT}{(V-nb)²}=0 [/mm] da Wendepunkt
[mm] d²p/dV²=\bruch{2nRT}{(V-nb)³}-\bruch{6n²a}{V^4}=0 [/mm]

aus der ersten Ableitung erhalte ich [mm] a=\bruch{RTV³}{2n(V-nb)²} [/mm]
aus der 2. Abl.: [mm] \bruch{2RTV^4}{6na}=(V-nb)³ [/mm]
Setze das erste Ergebnis ins 2. ein:
nb=V-2/3 V=1/3 V
in das erste Ergebnis: a=9/8 R²T²/p
Die einheit ist ja ne Druckeinheit, doch die Vorfaktoren stimmen nichtich hab ja 9/8 raus, es sollte aber (3/8)*(9/8)rauskommen.... ich bin mir aber sicher, dass ich die Potenzen richtig gemacht habe, wo liegt der fehler?

        
Bezug
van der Waals: Antwort
Status: (Antwort) fertig Status 
Datum: 10:04 Do 09.08.2007
Autor: Schnien

Also, ich hab zuerst V aus den ersten beiden Ableitungen ermittelt. Da komme ich auf V=3nb.
Das habe ich in die Ausgangsgleichung eingesetzt und diese nach a umgestellt. Erhalte dann a=9RTb/2 - [mm] 9pb^2. [/mm]
Des weiteren habe ich V in die erste (oder zweite, das ist egal) Ableitung eingesetzt und auch diese nach a umgestellt. Ich erhalte dann a=27bRT/8. Dann setzte ich die beiden Ergebnisse für a gleich, also 27bRT/8 = 9RTb/2 - [mm] 9pb^2, [/mm] stelle nach b um und erhalte b=RT/8p. Dies wiederum setze ich in a ein und erhalte a=27/64 [mm] T^2R^2/p. [/mm]

Bezug
                
Bezug
van der Waals: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:04 Do 09.08.2007
Autor: benevonmattheis

hi
ja, du hast recht, habs inzwischen selbst gefunden, den fehler... hab nämlich zwischendurch die ideale Gasgleichung benutzt, so ein schwachsinn.
komme jetzt auch aufs ergebnis,
trotzdem danke für die Mühe,
benevonmattheis

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Physik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]