matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare Algebraunterräume und direkte summe
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Uni-Lineare Algebra" - unterräume und direkte summe
unterräume und direkte summe < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

unterräume und direkte summe: aufgabe
Status: (Frage) beantwortet Status 
Datum: 18:17 Di 31.05.2005
Autor: schiepchenmath


          für einen vektorraum V bezeichen wir ( nur in der aufgabe) die räume der symmetrischen bzw. alternierenden m-formen auf V mit S(V) bzw. A(V). sei V ein mindestens zweidimensionaler reeller vektorraum.

a) überprüfen sie dass es sich in beiden fällen um unterräume handelt

b) bweisen sie dass T2 (V)= S2(V) [mm] \oplus [/mm] A2(V)

c) warum kann zumindestens bie zweidimansionalen V  T3=S3 [mm] \oplus [/mm] A3 nicht mehr gelten?

also bei a) ich weiß wie man überprüft es sich um unterräume handelt, nur in diesem fall weiß ich nicht was m-formen sind und kann sie deshalb auch nicht prüfen, und bei den anderen teilaufgaben versteh ich nu r bahnhof.... vielleicht kann mir mal jemand ne begriffserklärung geben oder nen ansatz

        
Bezug
unterräume und direkte summe: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:24 Di 31.05.2005
Autor: terrier

ich denke es sind multilineare abbildungen gemeint.habt ihr die gemacht?z.b n=2 bilinearform,diese ist symmetrisch wenn für  B:VxV->k  (das ist die bilinearform) gilt: B(v,w)=B(w,v) für alle v,w in V,und alternierend wenn B(v,w)=-B(w,v) für alle v,w in V. ich schau noch mal nach,wenn es jemand besser weis glaub ihm...

Bezug
                
Bezug
unterräume und direkte summe: Frage
Status: (Frage) beantwortet Status 
Datum: 18:29 Di 31.05.2005
Autor: schiepchenmath

und wie zeige ichdann dass das unterräume sind? ist doch klar das v+w auch im jeweiligen raum sind oder?

Bezug
        
Bezug
unterräume und direkte summe: Antwort
Status: (Antwort) fertig Status 
Datum: 10:22 Mi 01.06.2005
Autor: Julius

Hallo!

Die Aussage, dass es Vektorräume sind, ist wirklich trivial; das solltest du alleine hinkriegen.

Zum Beispiel:

[mm] $(\sigma [/mm] + [mm] \tau)(v,w) [/mm] = [mm] \sigma(v,w) [/mm] + [mm] \tau(v,w) [/mm] = [mm] \ldots$ [/mm]

Ich nehme mal an, dass die "2" anzeigen soll, dass es sich um Bilinearformen (2-Formen) handelt. Dann kannst du die Lösung der Aufgabe b) hier nachlesen.

Viele Grüße
Julius

Bezug
                
Bezug
unterräume und direkte summe: mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:29 Mi 01.06.2005
Autor: schiepchenmath

danke dir, man wieso bin ich da nicht selber draufgekommen? hab immer nen brett vorm kopf, das mir die klare sicht versperrt..... danke ich habs jetzt verstanden

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]