matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGruppe, Ring, Körperuntergruppen der diedergruppe
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Gruppe, Ring, Körper" - untergruppen der diedergruppe
untergruppen der diedergruppe < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

untergruppen der diedergruppe: untergruppen
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 19:26 Di 13.11.2007
Autor: sarinast

Aufgabe
Bestimmen Sie die Untergruppen der Diedergruppe [mm] D_4 [/mm]

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt
Bestimme die Untergruppen der Diedergruppe [mm] D_4. [/mm]
Wir haben grundsätzlich Probleme Untergruppen von der Diedergruppe zu finden. Wir haben es mit Spiegelungen und Drehungen, sowie mit Transpositionen und Zyklen versucht, sind aber leider nicht zum Ziel gelangt.
Wir wissen, dass es Untergruppen der Ordnungen 2 (Anzahl 5), 4 (Anzahl 3) und 1 (Anzahl 1) gibt.

Ich wäre sehr dankbar für einen Lösungansatz.

        
Bezug
untergruppen der diedergruppe: Antwort
Status: (Antwort) fertig Status 
Datum: 22:50 So 18.11.2007
Autor: andreas

hi

gib bitte mal eure definition der dieder gruppe an, dann kann man dir unter bestimmt weiterhelfen. ansonsten ist immer eine gewinnbringende herangehensweise sich die von einem element $a$ erzeugte unterguppe [mm] $\left< a \right>$ [/mm] anzuschauen. damit hat man sich dann auch gleich überlegt, wenn man eine unterguppe $U$ mit $a [mm] \in [/mm] U$ gegeben hat, dass dann auch [mm] $\left< a \right> \subseteq [/mm] U$ gelten muss.

grüße
andreas

Bezug
                
Bezug
untergruppen der diedergruppe: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 20:12 Mi 21.11.2007
Autor: sarinast

Vielen Dank schon mal für die Teilantwort.

Wir haben die Diedergruppe als [mm] D_n [/mm] = < [mm] d_x, [/mm] s > wobei x = 2pi/n definiert. d ist dabei eine Drehung um Winkel 2pi/n und s eine Spiegelung.

Ich habe für diese Aufgabe eine Lösung gefunden, kann sie aber leider nicht nachvollziehen.

z.b. ist < (1,3)(2,4) > eine Untergruppe der Ordnung 2. Da gibt es ja noch 4 andere. Ich weiss nun nicht, wie man auf diese kommt. Mir ist klar, dass diese Untergruppe abgeschlossen sein muss, sowie ein Neutralelement und ein Inverses beinhalten muss. Man muss dies ja irgendwie erzeugen, und ich habe keine Ahnung, wie ich da alle Untergruppen finden sollte.

Bezug
                        
Bezug
untergruppen der diedergruppe: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 09:00 Fr 07.12.2007
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]