matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenNumerik linearer Gleichungssystemeunterbestimmtes Gl.system
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Numerik linearer Gleichungssysteme" - unterbestimmtes Gl.system
unterbestimmtes Gl.system < Lin. Gleich.-systeme < Numerik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Numerik linearer Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

unterbestimmtes Gl.system: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:59 Do 30.11.2006
Autor: zoro

Aufgabe
  Hallo alle zusammen!
Ich hab folgendes Problem:
ein unterbestimmtes Gleichungssystem mit 6 Gleichungen und 39 Unbekannten!!!
Dies will ich lösen, allerdings mit folgender Bedingung:
-Die gesuchten, unbekannten 39 Parametern müssen in der Lösung alle positiv sein (wichtig)

Mir ist bekannt dass ein unterbestimmtes Gl.system durch Annährunsverfahren gelöst wird. Dies habe ich auch versucht und bekomme aber unteranderen auch negative Lösungswerte. Genau dass soll nicht sein!
Meine Frage: Wie und bei welchem Verfahren kann man diese Bedienung setzen, dass alle Unbekanten, in dem Lösungsvektor positiv sein sollen.
Ob das überhaupt möglich ist???

Wie auch immer, ich wäre euch echt für jeden Lösungsvorschlag dankbar.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
unterbestimmtes Gl.system: Antwort
Status: (Antwort) fertig Status 
Datum: 02:52 Sa 16.12.2006
Autor: Marc

Hallo zoro,

>  Ich hab folgendes Problem:
>  ein unterbestimmtes Gleichungssystem mit 6 Gleichungen und
> 39 Unbekannten!!!
>  Dies will ich lösen, allerdings mit folgender Bedingung:
>  -Die gesuchten, unbekannten 39 Parametern müssen in der
> Lösung alle positiv sein (wichtig)
>  Mir ist bekannt dass ein unterbestimmtes Gl.system durch
> Annährunsverfahren gelöst wird. Dies habe ich auch versucht
> und bekomme aber unteranderen auch negative Lösungswerte.
> Genau dass soll nicht sein!
>  Meine Frage: Wie und bei welchem Verfahren kann man diese
> Bedienung setzen, dass alle Unbekanten, in dem
> Lösungsvektor positiv sein sollen.
>  Ob das überhaupt möglich ist???

Im allgemeinen Fall sicher nicht, eine der Gleichungen könnte ja lauten [mm] $x_1=-1$ [/mm]
  

> Wie auch immer, ich wäre euch echt für jeden
> Lösungsvorschlag dankbar.

Vielleicht kann man eine positive Lösung einfacher ablesen, wenn man den Lösungsraum parametrisiert darstellt, bei z.B. 3 Gleichungen und 6 Unbekannten bspw.

[mm] $\vektor{x_1\\x_2\\x_3\\x_4\\x_5\\x_6}=\vektor{1\\-1\\1\\0\\0\\0}+x_4*\vektor{-5\\0\\1\\1\\0\\0}+x_5*\vektor{-3\\1\\1\\0\\1\\0}+x_6*\vektor{1\\2\\3\\0\\0\\1}$ [/mm]

(Dabei sind [mm] $x_4,x_5,x_6$ [/mm] die freien Variablen des LGS)

Nun kann man folgende Ungleichungen aufstellen (zusätzlich zu [mm] $x_1,\ldots,x_6>0$): [/mm]

I [mm] $-5x_4-3x_5+x_6>-1$ [/mm]

II [mm] $x_5+2x_6>1$ [/mm]

III [mm] $x_4+x_5+3x_6>-1$ [/mm]

Die Variablen mit negativen Koeefizienten wähle ich möglichst klein:

Wähle [mm] $x_4=2$, $x_5=1$ $\Rightarrow\ x_6>12$ [/mm] also [mm] $x_6=13$ [/mm]

Dann erhalte ich

[mm] $\vektor{1\\-1\\1\\0\\0\\0}+2*\vektor{-5\\0\\1\\1\\0\\0}+\vektor{-3\\1\\1\\0\\1\\0}+13*\vektor{1\\2\\3\\0\\0\\1}=\vektor{1\\26\\43\\2\\1\\13}$ [/mm]


Das Ganze erinnert mich ein bisschen an die lineare Optimierung, vielleicht hilft es ja (ich sehe es nicht), in dem obigen Ungleichungssystem ebenfalls "Schlupfvariablen" einzuführen

I [mm] $-5x_4-3x_5+x_6+x_7=-1$ [/mm]
II [mm] $x_5+2x_6+x_8=1$ [/mm]
III [mm] $x_4+x_5+3x_6+x_9=-1$ [/mm]

Viele Grüße,
Marc


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Numerik linearer Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]