matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Gleichungssystemeunterbest. Gleichungssys.
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Lineare Gleichungssysteme" - unterbest. Gleichungssys.
unterbest. Gleichungssys. < Lineare Gleich.-sys. < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

unterbest. Gleichungssys.: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:15 Mi 15.10.2008
Autor: itse

Aufgabe
Die Lösung des folgenden Gleichungssystems hängt vom Parameter t [mm] \in [/mm] IR ab. Geben Sie die Lösungsmenge in Abhängigkeit von t an!

a: 6x+3y+t²=9t+1
b: 6x+3y+3t²=9t+3

Hallo Zusammen,

ich habe nun b-a gerechnet und für t [mm] \in [/mm] {-1,1} erhalten, muss ich nun für t=-1 und t=1 einsetzen und dann die Lösung berechnen? Dies ist doch ein unterbestimmtes Gleichungssystem, wie muss man da vorgehen? Ich hab mal im Internet gesucht, aber nichts brauchbare gefunden.

Vielen Dank,
itse

        
Bezug
unterbest. Gleichungssys.: Antwort
Status: (Antwort) fertig Status 
Datum: 15:24 Mi 15.10.2008
Autor: fred97

Du hast Recht, das Gleichungssystem ist nur lösbar, wenn t = 1 oder t = -1.


Der Fall t = 1:  das Gl.- system ist dann

                           2x+y = 3   (Geradengleichung !)

d.h.,genau die Punkte (x,y) auf der Gerade sind Lösungen des Gl.-systems


Der Fall t = -1:  das Gl.- system ist dann

                           2x+y = -3   (Geradengleichung !)

d.h.,genau die Punkte (x,y) auf der Gerade sind Lösungen des Gl.-systems


FRED

Bezug
                
Bezug
unterbest. Gleichungssys.: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:34 Mi 15.10.2008
Autor: itse

Hallo,

> Du hast Recht, das Gleichungssystem ist nur lösbar, wenn t
> = 1 oder t = -1.
>  
>
> Der Fall t = 1:  das Gl.- system ist dann
>  
> 2x+y = 3   (Geradengleichung !)
>  
> d.h.,genau die Punkte (x,y) auf der Gerade sind Lösungen
> des Gl.-systems

Damit würde sich (0,3) ergeben, jedoch gibt doch undendlich viele Zahlenpaare, die dies Gleichung erfüllen?

> Der Fall t = -1:  das Gl.- system ist dann
>  
> 2x+y = -3   (Geradengleichung !)
>  
> d.h.,genau die Punkte (x,y) auf der Gerade sind Lösungen
> des Gl.-systems

Hierbei wäre es dann (0,-3). Als Lösung des Ganzen soll für t [mm] \in [/mm] {-1,1} gelten: L={(s,3t-2s) | s [mm] \in [/mm] IR}, wie kommt man darauf? Wie ist die allgemeine Vorgehensweise, bei unterbestimmten Gleichungssystem mit unendlich vielen Lösungen?

Danke für die Antwort
itse

Bezug
                        
Bezug
unterbest. Gleichungssys.: Antwort
Status: (Antwort) fertig Status 
Datum: 15:45 Mi 15.10.2008
Autor: fred97


> Hallo,
>  
> > Du hast Recht, das Gleichungssystem ist nur lösbar, wenn t
> > = 1 oder t = -1.
>  >  
> >
> > Der Fall t = 1:  das Gl.- system ist dann
>  >  
> > 2x+y = 3   (Geradengleichung !)
>  >  
> > d.h.,genau die Punkte (x,y) auf der Gerade sind Lösungen
> > des Gl.-systems
>  
> Damit würde sich (0,3) ergeben, jedoch gibt doch undendlich
> viele Zahlenpaare, die dies Gleichung erfüllen?

Ja , alle Paare, die auf der Geraden liegen


>
> > Der Fall t = -1:  das Gl.- system ist dann
>  >  
> > 2x+y = -3   (Geradengleichung !)
>  >  
> > d.h.,genau die Punkte (x,y) auf der Gerade sind Lösungen
> > des Gl.-systems
>  
> Hierbei wäre es dann (0,-3). Als Lösung des Ganzen soll für
> t [mm]\in[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

{-1,1} gelten: L={(s,3t-2s) | s [mm]\in[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

IR}, wie kommt

> man darauf?

Nehmen wir den Fall t=1.

Setze x = s, wegen 2x+y = 3 , ist dann y = 3-2x = 3-2s = 3t -2s


Nehmen wir den Fall t=-1.

Setze x = s, wegen 2x+y = -3 , ist dann y = -3-2x = -3-2s = 3t -2s



FRED

>Wie ist die allgemeine Vorgehensweise, bei

> unterbestimmten Gleichungssystem mit unendlich vielen
> Lösungen?
>  
> Danke für die Antwort
>  itse


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]