matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra Sonstigesunteralgebren
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Lineare Algebra Sonstiges" - unteralgebren
unteralgebren < Sonstiges < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

unteralgebren: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:29 Mi 13.06.2007
Autor: caro5

Aufgabe
Seieb K ein Körper und A eine endlich dimensionale K-Algebra (aossoziativ, mit 1) n:= dim A.
Zeige: es existiert B [mm] \subset M_{n}(K) [/mm] eine unteralgebra und A [mm] \to [/mm] B ein Algebraisomorphismus.

hallo ihr lieben
brauch euch mal wieder...
ich weiss, dass die menge der n [mm] \times [/mm] n matrizen ´mit der matrizenmultiplikation eine assoziative algebra bilden.
aber wann ist es jetzt unteralgebra??? heisst das dann dass sie weniger elemente enthält oder was kann ich mir darunter vorstellen???
denn wenn sie weniger elemente enthält, dann weiss ich ja zumindest schonmal, dass die abbildung in jedem fall schon mal surjektiv ist!!!

wäre super wenn mir einer mit meinem problem weiter helfen könnte...

liebe grüße die verzweifelte caro

        
Bezug
unteralgebren: Antwort
Status: (Antwort) fertig Status 
Datum: 15:43 Mi 13.06.2007
Autor: statler

Hi Carolin!

> Seien K ein Körper und A eine endlich dimensionale
> K-Algebra (assoziativ, mit 1), n:= dim A.
>  Zeige: es existiert B [mm]\subset M_{n}(K)[/mm] eine Unteralgebra
> und A [mm]\to[/mm] B ein Algebraisomorphismus.

Nimm dir eine feste Basis von A über K (der Länge n). Für a [mm] \in [/mm] A ist dann die Linksmultiplikation in A eine K-lineare Abbildung von A nach A, wird also durch eine nxn-Matrix beschrieben. Dann definierst du [mm] \phi: [/mm] A [mm] \to M_{n}(K) [/mm] dadurch, daß [mm] \phi(a) [/mm] genau diese Matrix sein soll.

Jetzt mußt du nachweisen, daß [mm] \phi [/mm] es tut.

Gruß aus HH-Harburg
Dieter

Bezug
                
Bezug
unteralgebren: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:01 Do 14.06.2007
Autor: caro5

ja super vielen dank für deine hilfe!!!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]