matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenSchul-Analysisunmögliche Zahlenfolge?
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Schul-Analysis" - unmögliche Zahlenfolge?
unmögliche Zahlenfolge? < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

unmögliche Zahlenfolge?: Kopfnuss
Status: (Frage) beantwortet Status 
Datum: 22:47 Fr 23.09.2005
Autor: ZooYork

Hallo!

Also ich sitze jetzt schon seit 2 Stunden an einer Zahlenfolge, die ich einem Forum gefunden habe, die dort nicht gelöst wurde. Aufgabe ist es die explizite Bildungsvorschrift folgender Folgeglieder zu finden:

[mm] a_{n} [/mm] = [mm] \{3; 33; 333; 3333; 33333; ... \} [/mm]

Ich hab mir schon echt den Kopf dran zerbrochen und würde mich freuen, wenn mich jemand erlösen könnte.

Mfg Basti


        
Bezug
unmögliche Zahlenfolge?: Antwort (editiert!)
Status: (Antwort) fertig Status 
Datum: 23:41 Fr 23.09.2005
Autor: Karl_Pech

Hallo Basti,


> Also ich sitze jetzt schon seit 2 Stunden an einer
> Zahlenfolge, die ich einem Forum gefunden habe, die dort
> nicht gelöst wurde. Aufgabe ist es die explizite
> Bildungsvorschrift folgender Folgeglieder zu finden:
>  
> [mm]a_n = \left(3; 33; 333; 3333; 33333; \dotsc \right)[/mm]


Wir schreiben uns die Zahlen erstmal anders auf:


[mm] $3*10^0$ [/mm]
[mm] $3*10^1 [/mm] + [mm] 3*10^0$ [/mm]
[mm] $3*10^2 [/mm] + [mm] 3*10^1 [/mm] + [mm] 3*10^0$ [/mm]
[mm] $\vdots$ [/mm]


Hallo Daniel!

Du hast Recht! Wenn ich n = 0 setze, kommt bei der Summe 1 raus, während bei der Formel 0 rauskommt. Der Fehler müßte behoben sein, wenn ich die Summationsgrenze verringere:


[mm] $\left(a_n\right) [/mm] = [mm] \sum_{i=0}^{{\color{blue}n-1}} {3*10^i} [/mm] = [mm] 3\sum_{i=0}^{{\color{blue}n-1}} {10^i} \mathop [/mm] = [mm] ^{\begin{array}{c}\text{Summenregel für} & \text{geometrische Reihen}\end{array}} 3\frac{10^n-1}{10-1} [/mm] = [mm] \frac{10^n-1}{3}$ [/mm]


Und das ist unsere gesuchte Formel für [mm] $a_n$. [/mm] Jetzt wo man die Formel aber kennt, erkennt man noch eine andere einfachere Argumentation, die zu dieser Formel führt: Im dekadischen Zahlensystem gilt doch immer


$10 - 1 = 9, [mm] 10^2 [/mm] - 1 = 99, [mm] 10^3 [/mm] - 1 = [mm] 999,\dotsc$ [/mm]


Na ja, und wenn man solche Zahlen durch 3 teilt.... ;-)



Grüße
Karl
[user]




Bezug
                
Bezug
unmögliche Zahlenfolge?: geometrische Reihe
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:31 Sa 24.09.2005
Autor: danielinteractive

Hallo Karl,

gute Antwort, allerdings mit einem winzigen Fehler (hab ich nicht extra auf "falsch" gestellt): Es ist
[mm] \summe_{i=0}^{n} 10^{i} = \bruch{10^{\red{n+1}}-1}{10-1}[/mm]
Dann ist sowohl links (also vor der Umformung) als auch rechts [mm]a_0=3[/mm].

mfg
Daniel

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]