unitäre Vektorräume < Moduln/Vektorraum < Lineare Algebra < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 23:17 Mo 31.05.2010 | Autor: | skoopa |
Aufgabe | Sei [mm] (V,\gamma) [/mm] unitärer Vektorraum, [mm] dim(V)<\infty [/mm] und [mm] \phi\in [/mm] End(V).
Folgern Sie aus [mm] \gamma(\phi(v),v)=0 \mbox{ }\forall v\in [/mm] V, dass [mm] \phi=0. [/mm] |
Hallousen!
Also ich hänge an der obigen Aufgabe schon seit einiger Zeit. Hab schon mehrfach gedacht, dass ichs hätte, aber jedes Mal wieder einen Fehler in meiner Argumentation gefunden.
Ich habe über mehrere Ecken nun die folgende Lösung bekommen, die mir aber nicht sehr einleuchtet:
Sei [mm] \phi [/mm] die durch die Matrix A beschriebene lineare Abbildung
[mm] \Rightarrow \phi(v)=Av \forall v\in [/mm] V
Es ist [mm] \gamma(v,v)\ge0 \forall v\in [/mm] V, da [mm] \gamma [/mm] Skalarprodukt
und [mm] \gamma(v,v)=0 \gdw [/mm] v=0 [mm] \Rightarrow [/mm] Im(v)=Re(v)=0.
Und das wars. Allerdings weiß ich nicht, wie daraus die Behauptung gezeigt werden soll. Ich meine, was da steht ist ja nur die positive Definitheit des Skalarprodukts ohne Bezug auf die Aufgabe, oder?
Da dacht ich, vielleicht kann mir einer von euch nen guten Tipp geben oder nen Ansatz.
Ich wäre euch äußerst dankbar!
Viele Grüße!
skoopa
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 07:15 Di 01.06.2010 | Autor: | fred97 |
Schau mal hier:
http://www.uni-ulm.de/fileadmin/website_uni_ulm/mawi.inst.020/sauter/ss09/elfa/blatt03sol.pdf
FRED
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 08:53 Di 01.06.2010 | Autor: | skoopa |
Hey Fred!
Danke für den Link! Ich weiß jetzt glaub wie's geht. Allerdings muss ich jetzt noch diese Polarisationsgleichung nachrechnen. Uäch...
Wenn ich noch genug Zeit hab, poste ich meine Lösung noch.
Viele Grüße und vielen Dank!
skoopa
|
|
|
|