matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenInduktionsbeweiseungleichungen beweisen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Induktionsbeweise" - ungleichungen beweisen
ungleichungen beweisen < Induktion < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Induktionsbeweise"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

ungleichungen beweisen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 07:59 Do 23.10.2008
Autor: gigi

Aufgabe
Beweise ohne verwendung der binomialformel: [mm] (1+x)^n \ge [/mm] 1+n*x für alle [mm] n\in \IN [/mm] und [mm] x\in \IR [/mm] mit [mm] x\ge [/mm] -1

ich habe ein allgemeines problem, wie ich bei ungleichungen beweise führe! wie weit und was muss ich umformen, damit ich abschätzen/belegen kann, dass eine aussage stimmt (oder eben nicht)? am besten ist es natürlich, auf beiden seiten das gleiche stehen zu haben und wenn rechts zb noch ein summand mehr auftaucht, so ist die rechte seite größer....

obige ungleichung soll einfach einmal als bsp dienen.

danke für jede hilfe, grüße

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
ungleichungen beweisen: Antwort
Status: (Antwort) fertig Status 
Datum: 08:17 Do 23.10.2008
Autor: angela.h.b.


> Beweise: [mm](1+x)^n \ge[/mm] 1+n*x für alle [mm]n\in \IN[/mm] und [mm]x\in \IR[/mm]
> mit [mm]x\ge[/mm] -1
>  ich habe ein allgemeines problem, wie ich bei
> ungleichungen beweise führe! wie weit und was muss ich
> umformen, damit ich abschätzen/belegen kann, dass eine
> aussage stimmt (oder eben nicht)? am besten ist es
> natürlich, auf beiden seiten das gleiche stehen zu haben
> und wenn rechts zb noch ein summand mehr auftaucht, so ist
> die rechte seite größer....
>  
> obige ungleichung soll einfach einmal als bsp dienen.

Hallo,

bei Ungleichungen beginnt man normalerweise mit der einen Seite, und die formt man dann um und schätzt ab, bis am Ende die andere Seite dasteht.

Ein allgemeines Rezept zu geben ist kaum möglich, denn mann kan ja sehr verschieden abschätzen, u.U. braucht man auch mal ziemlich viel Wissen für eine Abschätzung, und wie man abschätzt, hat natürlich auch etwas mit dem Ziel zu tun, welches man hat.

Wenn ich beim Bäcker 5 normale Brötchen, ein Rosinenbrötchen und ein Kümmelbrötchen kaufe und ich wissen will, ob die 2.51 Euro in meiner Hosentasche reichen, muß ich anders (genauer) abschätzen, als wenn ich einen 20-Euro-Schein dabeihabe.

Hüten muß man sich davor, Abschätzungen mit irgendwelchen Äquivalenzumformungen zu zeigen. Dabei macht man sehr leicht Fehler.

Zu Deiner Bernoulli-Ungleichung: die beweist man mit vollständiger Induktion. Im Induktionsschritt muß man dann abschätzen. Das ist ziemlich einfach und kurz, mach das doch mal.

Gruß v. Angela



Bezug
                
Bezug
ungleichungen beweisen: ohne binomialformel!
Status: (Frage) beantwortet Status 
Datum: 09:40 Do 23.10.2008
Autor: gigi

gut, also induktionsanfang für n=1 ergibt eine w.A.

im induktionsschluss schließe ich nun von n auf n+1, es ist also zu zeigen, dass [mm] (1+x)^{n+1} \ge [/mm] 1+(n+1)x

beim umformen komme ich dann so weit:

[mm] (1+x)^{n+1}= (1+x)^n [/mm] (1+x) [mm] \ge [/mm] (1+nx) (1+x) -einsetzen der vor.
[mm] =1+nx+x+nx²=1+(n+1)x+nx²\ge [/mm] 1+(n+1)x
damit wäre der beweis doch fertig, oder?

die voraussetzung [mm] x\ge [/mm] -1 könnte/sollte ich auch noch verwenden, aber an welcher stelle??

ich darf im übrigen keine binomialformel anwenden!

Bezug
                        
Bezug
ungleichungen beweisen: Antwort
Status: (Antwort) fertig Status 
Datum: 10:16 Do 23.10.2008
Autor: angela.h.b.


> gut, also induktionsanfang für n=1 ergibt eine w.A.
>  
> im induktionsschluss schließe ich nun von n auf n+1, es ist
> also zu zeigen, dass [mm](1+x)^{n+1} \ge[/mm] 1+(n+1)x
>  
> beim umformen komme ich dann so weit:
>

[mm] >(1+x)^{n+1}= \red{(1+x)^n(1+x) \ge (1+nx) (1+x)} [/mm] -einsetzen der

> vor.
>  [mm]=1+nx+x+nx²=1+(n+1)x+nx²\ge[/mm] 1+(n+1)x
>  damit wäre der beweis doch fertig, oder?
>  
> die voraussetzung [mm]x\ge[/mm] -1 könnte/sollte ich auch noch
> verwenden, aber an welcher stelle??

Hallo,

ja, wenn man eine Voraussetzung hat, die man dann nicht verwendet, ist's immer verdächtig.

Du hast an der markierten Stelle folgendes verwendet:  

[mm] (1+x)^n\ge [/mm] 1+nx

==>

[mm] (1+x)^n(1+x)\ge [/mm] (1+nx)(1+x),

und das gilt nur für [mm] 1+x\ge [/mm] 1.


>  
> ich darf im übrigen keine binomialformel anwenden!

Hast Du doch auch nicht.

Gruß v. Angla


Bezug
                                
Bezug
ungleichungen beweisen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:28 Do 23.10.2008
Autor: gigi




>  
> Du hast an der markierten Stelle folgendes verwendet:  
>
> [mm](1+x)^n\ge[/mm] 1+nx
>  
> ==>
>  
> [mm](1+x)^n(1+x)\ge[/mm] (1+nx)(1+x),
>  
> und das gilt nur für [mm]1+x\ge[/mm] 1.

wie schreibst du das formal auf? einfach einen pfeil an entsprechender stelle mit der bemerkung?

>  
>
> >  



Bezug
                                        
Bezug
ungleichungen beweisen: Antwort
Status: (Antwort) fertig Status 
Datum: 12:33 Do 23.10.2008
Autor: angela.h.b.


>
>
>
> >  

> > Du hast an der markierten Stelle folgendes verwendet:  
> >
> > [mm](1+x)^n\ge[/mm] 1+nx
>  >  
> > ==>
>  >  
> > [mm](1+x)^n(1+x)\ge[/mm] (1+nx)(1+x),
>  >  
> > und das gilt nur für [mm]1+x\ge[/mm] 1.
>  
> wie schreibst du das formal auf? einfach einen pfeil an
> entsprechender stelle mit der bemerkung?

hallo,

ja, wenn's einem erst "unterwegs" auffällt, kann man's so machen.

Oder besser: 'ne kleine Zahl, und man schreibt dann später was dazu.

Oder etwas nobler: man schreibt dies als Vorüberlegung auf, bevor man mit der eigentlichen Ungleichungskette beginnt, versieht' mit [mm] (\*) [/mm]  und schreibt dann bei der Ungleichungskette an der passenden Stelle [mm] (\*) [/mm]  aufs [mm] \ge. [/mm]

Gruß v Angela





Bezug
                                        
Bezug
ungleichungen beweisen: Alternative Schreibmethode
Status: (Antwort) fertig Status 
Datum: 12:57 Do 23.10.2008
Autor: M.Rex

Hallo

So gehts auch:

[mm] ...\stackrel{\text{da}x\ge-1}{\ge}... [/mm]



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Induktionsbeweise"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]