matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Gleichungssystemeungleichungen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Lineare Gleichungssysteme" - ungleichungen
ungleichungen < Gleichungssysteme < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

ungleichungen: aufgabe 1
Status: (Frage) beantwortet Status 
Datum: 16:55 Mo 18.10.2010
Autor: sandra1980

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt

hallo..folgende ungleichung habe ich soweit ich konnte berechnet..ich weiss allerdings nicht ob die lösung richtig ist..wie gebe ich jetzt die lösungsmengen an.

[mm] \bruch{x+3}{x-3}<5 [/mm]

fall 1: x-3>0

x+3>5x-15
-4x>-18
[mm] x>\bruch{18}{4} [/mm]  

fall 2: x-3<0

x+3<5x-15    
[mm] x<\bruch{18}{4} [/mm]



        
Bezug
ungleichungen: Antwort
Status: (Antwort) fertig Status 
Datum: 17:01 Mo 18.10.2010
Autor: schachuzipus

Hallo sandra1980,

> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt
>
> hallo..folgende ungleichung habe ich soweit ich konnte
> berechnet..ich weiss allerdings nicht ob die lösung
> richtig ist..wie gebe ich jetzt die lösungsmengen an.
>
> [mm]\bruch{x+3}{x-3}<5[/mm]
>
> fall 1: x-3>0
>
> x+3>5x-15
> -4x>-18 [ok]
> [mm]x>\bruch{18}{4}[/mm] [notok]

Du musst aufpassen! Wenn du eine Ungleichung mit einer negativen Zahl (hier [mm]-\frac{1}{4}[/mm]) multiplizierst, dreht sich das Ungleichheitszeichen um!

Richtig also [mm]x \ \red{<} \ \frac{18}{4}=\frac{9}{2}[/mm]

>
> fall 2: x-3<0
>
> x+3<5x-15 [notok]

Es ist [mm]x-3<0[/mm], wenn du die Ungleichung damit multiplizierst, ergibt sich nach dem oben Gesagten:

[mm]x+3 \ \red{>} \ 5(x-3)[/mm] usw.

> [mm]x<\bruch{18}{4}[/mm]
>
>

Gruß

schachuzipus

Bezug
                
Bezug
ungleichungen: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 17:39 Mo 18.10.2010
Autor: sandra1980

ok danke für deine hilfe.
ich schreib das nochmal sauber hier rein..hoffe das es richtig ist

fall I: x-3>0
x+3>5x-15
-4x>-18
[mm] x<\bruch{9}{2} [/mm]

lösungsmenge [mm] L=(-\infty;\bruch{9}{2}) [/mm]

fall II: x-3<0

x+3<5x-15
-4x<-18
[mm] x>\bruch{9}{2} [/mm]

[mm] L=(\bruch{9}{2};\infty) [/mm]
hoffe bis hierhin ist das richtig..

sind die lösungsmengen denn richtig angegeben

liebe grüße

Bezug
                        
Bezug
ungleichungen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:51 Mo 18.10.2010
Autor: angela.h.b.

Hallo,

s. meine Antwort.

Gruß v. Angela


Bezug
        
Bezug
ungleichungen: Antwort
Status: (Antwort) fertig Status 
Datum: 17:50 Mo 18.10.2010
Autor: angela.h.b.


> [mm]\bruch{x+3}{x-3}<5[/mm]
>  
> fall 1: x-3>0
>  
> x+3>5x-15

Hallo,

das ist nicht richtig:

Du multiplizierst doch mit x-3, also mit etwas, was größer als 0 ist.
Also bleibt die Richtung des Ungleichheitszeichens erhalten.

Es ist also [mm] x+3\red{<}5x-15. [/mm]

Jetzt weiter mit den sonstigen Erkenntnissen, die Du im Thread gewonnen hast.

Fall 2 analog.

Gruß v. Angela

>  -4x>-18
>  [mm]x>\bruch{18}{4}[/mm]  
>
> fall 2: x-3<0
>  
> x+3<5x-15    
> [mm]x<\bruch{18}{4}[/mm]
>  
>  


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]