matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenDiskrete Mathematikungerade Anzahl von Teiler
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Diskrete Mathematik" - ungerade Anzahl von Teiler
ungerade Anzahl von Teiler < Diskrete Mathematik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Diskrete Mathematik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

ungerade Anzahl von Teiler: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:33 So 24.10.2010
Autor: oby

Aufgabe
Zeige, dass eine Zahl $ n [mm] \in \IN [/mm] $ genau dann eine ungerade Anzahl von Teilern
besitzt, wenn $ [mm] \wurzel{n} [/mm] $eine naturliche Zahl ist.

Hallo Matheraum.
Ich habe bereits eine Richtung zeigen können, und zwar dass aus wenn $ n $ eine Quadratzahl ist, dann ist die Anzahl der Teiler ungerade. Dies habe ich über die Primzaktorzerlegung hingekriegt, also mal so ne allgemeine Primfaktorzerlegung von $ [mm] \wurzel{n} [/mm] $ hingeschrieben, dann kommt in der Primfaktorzerlegung von $ n $ jeweils ein gerader Exponent vor. Also so:
$ n = [mm] p_1^{2e_1}p_2^{2e_2} [/mm] ... [mm] p_m^{2e_m} [/mm] $
Dann ist die Anzahl der Teiler gerade $  [mm] \produkt_{i=1}^{m} (2e_i+1) [/mm] $ , da ich die Teiler dadurch bestimme, dass ich jeweils einen Exponenten $ [mm] t_i [/mm] $ zwischen 0 und [mm] $e_i$ [/mm] auswählen kann . Und das ist immer ungerade, weil das Produkt ungerader Zahle immer ungerade ist.
So nun zur umgekehrten Richtung:
Habs auch erst irgendwie über Primfaktorzerlegung versucht, dann hab ichs mal mit Induktion nach Anzahl der Teiler versucht, aber beides hat nicht gefruchtet...
Vielleicht habt ihr eine gute Idee ?? Sollte eigentlich nicht so schwierig sein, weil die Aufgabe nur zwei Punkte bringt... Vielleicht könntet ihr mir auch meine gezeigte Richtung kurz bestätigen (oder vielleicht hab ich ja einen Denkfehler drin. Das kommt bei mir oft mal vor. :) ).
Danke schon mal,
Oby

        
Bezug
ungerade Anzahl von Teiler: Teiler kommen paarweise
Status: (Antwort) fertig Status 
Datum: 21:47 So 24.10.2010
Autor: moudi

Hallo Oby

Ein kleiner Tipp: Man kann Teiler immer paarweise bilden. Ist k ein Teiler von n, dann ist auch [mm] $\frac [/mm] nk$ ein Teiler. Besitzt die Zahl also eine ungerade Anzahl von Teilern, dann muss dass "mittlere Paar" aus nur eine Zahl bestehen. Was folgt dann daraus fuer n?

mfG Moudi

Bezug
                
Bezug
ungerade Anzahl von Teiler: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:08 So 24.10.2010
Autor: oby

Hallo,
Achso, Danke- so schwer war's ja gar nicht.. Aber auf die Idee musste man halt kommen, also vielen Dank!
Schönen Abend noch!
Oby

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Diskrete Mathematik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]