matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenDifferentiationunendliche Differenzierbarkeit
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Differentiation" - unendliche Differenzierbarkeit
unendliche Differenzierbarkeit < Differentiation < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

unendliche Differenzierbarkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:25 Mo 17.05.2010
Autor: Lyrn

Aufgabe
Es sei [mm]f: \IR \to \IR[/mm]
[mm]x \mapsto \begin{cases} exp(- \bruch{1}{x}), & \mbox{für } x>0 \\ 0, & \mbox{für } x \le 0 \end{cases}[/mm]

Zeigen Sie dass [mm]f[/mm] unendlich oft differenzierbar ist.

Kann mir bitte einer so schnell wie möglich sagen, wie ich herausbekomme, ob eine Funktion unendlich oft differenzierbar ist.
Oder besser gesagt, welche Vorraussetzungen müssen gelten, damit unendliche Differenzierbarkeit gilt?

Vielen Dank schon mal!

        
Bezug
unendliche Differenzierbarkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 22:33 Mo 17.05.2010
Autor: Teufel

Hi!

Zeig erst mal, dass f stetig ist. Das Problem hierbei sollte nur die Stelle x=0 sein. Dann kannst du mit den Ableitungen anfangen. Alle Ableitungen haben in etwas das gleiche Muster Auch hier musst du dann zeigen, dass jede Ableitung in 0 existiert (überall sonst tut sie es sowieso).

[anon] Teufel

Bezug
                
Bezug
unendliche Differenzierbarkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:36 Mo 17.05.2010
Autor: Lyrn

Sorry, ich steh gerade aufm Schlauch :D

Wie weise ich bei der Funktion am einfachsten Stetigkeit nach? Mit [mm] \varepsilon [/mm] - [mm] \delta [/mm] Kriterium?

Vielen Dank schonmal!

Bezug
                        
Bezug
unendliche Differenzierbarkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 22:41 Mo 17.05.2010
Autor: schachuzipus

Hallo,

> Sorry, ich steh gerade aufm Schlauch :D
>  
> Wie weise ich bei der Funktion am einfachsten Stetigkeit
> nach? Mit [mm]\varepsilon[/mm] - [mm]\delta[/mm] Kriterium?

Hmm, das geht zwar immer, wird aber beliebig schwierig.

Besser über das Folgenkriterium der Stetigkeit!

Bzw. nutze die Stetigkeit der Exponentialfunktion ...

[mm] $\lim\limits_{x\to x_0}e^{g(x)}=e^{\lim\limits_{x\to x_0}g(x)}$ [/mm]

Für die Diffbarkeit in 0 solltest du dir den Differenzenquotienten ansehen und auch mal die Regel von de l'Hôpital ...

>  
> Vielen Dank schonmal!

Gruß

schachuzipus

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]