matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegralrechnunguneigentliches Integral
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Integralrechnung" - uneigentliches Integral
uneigentliches Integral < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

uneigentliches Integral: Schreibweise
Status: (Frage) beantwortet Status 
Datum: 20:14 Di 24.10.2006
Autor: Phoney

Aufgabe
Berechnen Sie das bestimme Integral [mm] I_1 [/mm] = [mm] \integral_{1}^{b}{\br{1}{x^2} dx} [/mm] für b [mm] \rightarrow \infty. [/mm]

Hallo.

Meine Fragen stehen weiter unten

[mm] $I_1=\integral_{1}^{b}{\br{1}{x^2} dx} [/mm] = [mm] [\br{-1}{x}]_1^b [/mm] = [mm] \br{-1}{b}+1$ [/mm]

[mm] \limes_{b\rightarrow\infty} I_1 [/mm] = 1

Ist die Schreibweise mathematisch korrekt oder wie würdet ihr das machen?

Warum handelt es sich um ein bestimmtes Integral und nicht um ein unbestimmtes? Weil in diesem Fall der Grenzwert existiert?

Gruß
Johann

        
Bezug
uneigentliches Integral: Okay
Status: (Antwort) fertig Status 
Datum: 20:45 Di 24.10.2006
Autor: Infinit

Hallo Johann,
Deine Schreibweise ist schon korrekt. Der Begriff des bestimmten Integrals bezieht sich darauf, dass das bestimmte Integral ein eindeutiges Ergebnis liefert, wohingegen ein unbestimmtes Integral immer eine nicht weiter bestimmbare Integrationskonstante C besitzt (deswegen unbestimmt), so dass alle Lösungen dieses Integrals, die sich nur um eine Konstante C unterscheiden, erlaubte Lösungen dieses Integrals sind. Ein bestimmtes Integral kann deswegen trotzdem als Ergebnis durchaus Unendlich liefern.  Der langen Rede kurzer Sinn: Ein bestimmtes Integral liefert eine Lösung, ein unbestimmtes eine Menge von Lösungen, die sich um C unterscheiden.
Viele Grüße,
Infinit

Bezug
                
Bezug
uneigentliches Integral: Dankeschön
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:52 Di 24.10.2006
Autor: Phoney

Hallo.

Recht herzlichen Dank für die Erklärung. Ich hoffe, ich kann nun ein unbestimmtes Integral von einem bestimmten Integral unterscheiden, wenn ich welche sehe.

Vielen Dank!

Gruß
Johann

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]