matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysisuneigentliche Integration
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Uni-Analysis" - uneigentliche Integration
uneigentliche Integration < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

uneigentliche Integration: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:15 Mi 25.01.2006
Autor: gigi66

Guten Abend zusammen!

Habe folgende Aufgabe und brauche dringende Hilfe

Es sei f:[0, [mm] \pi/2) \to\IR [/mm] eine stetige Funktion.Finde eine stetig diff'bare Funktion g:[0, [mm] \infty) \to \IR [/mm] derart,dass das Integral
[mm] \integral_{0}^{\pi/2} [/mm] {f(x) dx}
genau dann existiert,wenn das Integral
[mm] \integral_{0}^{\infty} [/mm] {f(g(t))g'(t) dt}
existiert und zeige f¨ur diese Funktion g ferner, dass im Fall der Existenz die beiden
Integrale ¨ubereinstimmen.

Meine Idee:

x = g(t) = arctan(t)
g'(t) = dx/dt = 1/(1 + [mm] t^2) [/mm]

so habe jetzt gezeigt, dass die beiden integrale gleich sind, war ja nicht so schwer. ich muss ja noch zeigen, dass das eine genau dann ex. wenn ds andere existiert und da hab ich jetzt meine probleme.

Hoffentlich kann mir einer helfen

vielen dank!

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


        
Bezug
uneigentliche Integration: Antwort
Status: (Antwort) fertig Status 
Datum: 08:50 Do 26.01.2006
Autor: SEcki


> [Aufgabe]

Also zur Existenz: Für alle [m]0>\varpesilon<\frac{\pi}{2}[/m] exitsiert [m]\int_0^\varepsilon f[/m], bei gegebenen [m]\varepsilon[/m], was erhält man dann sicher für das andere Integral (auch bei den Grnezen?) Kann man das umdrehn? Was passiert denn wenn [m]\varepsilon\to \frac{\pi}{2}[/m]?

SEcki

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]