matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegrationuneigentliche Integrale
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Integration" - uneigentliche Integrale
uneigentliche Integrale < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

uneigentliche Integrale: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:47 Mi 01.05.2013
Autor: Laura87

Aufgabe
Untersuchen Sie, ob die folgenden uneigentlichen Integrale existieren. Berechnen Sie im Falle der Existenz den Wert der entsprechenden Integrale

a) [mm] \integral_0^\infty{\bruch{x}{(x^2+1)^3}dx} [/mm]

b) [mm] \integral_0^1{\bruch{arccos(x)}{\wurzel{1-x^2}}dx} [/mm]

c) [mm] \integral_0^\infty{\bruch{1}{ln(x)}dx} [/mm]

Hallo,

ich bin mit dieser Aufgabe leider nicht so klar gekommen und benötige etwas Hilfe.

zu a)

Mit Substitution [mm] u=x^2+1 [/mm] habe ich

[mm] \bruch{1}{2}\integral_0^\infty{\bruch{1}{u^3}du}=[\bruch{1}{2}ln(|x^2+1|^3)]_0^\infty [/mm]

Ist das richtig?

Bei den anderen beiden hab ich irgendwie nichts hinbekommen und bitte deshalb um einen Tipp. Welche Integrationstechnik kann man anwenden?  Hab wie verrückt etwas versucht, aber ohne erfolg.

Lg

        
Bezug
uneigentliche Integrale: Antwort
Status: (Antwort) fertig Status 
Datum: 18:04 Mi 01.05.2013
Autor: Leopold_Gast

Die Substitution bei a) ist korrekt gewählt, allerdings falsch durchgerechnet. Du mußt die Grenzen ebenfalls substituieren.

Mit [mm]u = x^2 + 1[/mm] und [mm]\mathrm{d}u = 2x ~ \mathrm{d}x[/mm] geht [mm]x=0[/mm] in [mm]u=1[/mm] und [mm]x=\infty[/mm] in [mm]u=\infty[/mm] über:

[mm]\int_0^{\infty} \frac{x}{\left( x^2 + 1 \right)^3} ~ \mathrm{d}x = \frac{1}{2} \int_1^{\infty} \frac{\mathrm{d}u}{u^3} = \lim_{b \to \infty} \left( \frac{1}{2} \int_1^b \frac{\mathrm{d}u}{u^3} \right) [/mm]

Eine Resubstitution ist nicht erforderlich, da die Grenzen ja mittransformiert wurden. Allerdings solltest du die Stammfunktion von [mm]f(u) = \frac{1}{u^3}[/mm] richtig berechnen. Das hat nichts mit dem Logarithmus zu tun.

Bei b) sollte dir die Ableitung des Arcussinus auffallen.

Und bei c) denke in die andere Richtung ...

Bezug
                
Bezug
uneigentliche Integrale: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:37 Mi 01.05.2013
Autor: Laura87

Danke für die schnelle Antwort und Korrektur.

> Die Substitution bei a) ist korrekt gewählt, allerdings
> falsch durchgerechnet. Du mußt die Grenzen ebenfalls
> substituieren.
>  
> Mit [mm]u = x^2 + 1[/mm] und [mm]\mathrm{d}u = 2x ~ \mathrm{d}x[/mm] geht [mm]x=0[/mm]
> in [mm]u=1[/mm] und [mm]x=\infty[/mm] in [mm]u=\infty[/mm] über:
>  

[mm] \int_0^{\infty} \frac{x}{\left( x^2 + 1 \right)^3} [/mm] ~ [mm] \mathrm{d}x [/mm] = [mm] \frac{1}{2} \int_1^{\infty} \frac{\mathrm{d}u}{u^3} [/mm] = [mm] \lim_{b \to \infty} [/mm] ( [mm] \frac{1}{2} \int_1^b \frac{\mathrm{d}u}{u^3}=\lim_{b \to \infty} [-\bruch{1}{2}x^2]_1^b=\lim_{b \to \infty}(-\bruch{1}{4}b^2+\bruch{1}{4} [/mm] )-> [mm] \infty [/mm]


Bei b) sollte dir die Ableitung des Arcussinus auffallen.

also die Ableitung ist ja [mm] -\bruch{1}{nenner} [/mm]

Aus der Schule hab ich grob in Erinnerung:

bruch mit zähler = ableitung vom nenner --> ln(|nenner|) Wenn das stimmt waere hier die Stammfunktion [mm] -ln(\wurzel{|1-x^2|}) [/mm]

Lg

Bezug
                        
Bezug
uneigentliche Integrale: zu a.)
Status: (Antwort) fertig Status 
Datum: 19:00 Mi 01.05.2013
Autor: Loddar

Hallo Laura!


> [mm]\int_0^{\infty} \frac{x}{\left( x^2 + 1 \right)^3}[/mm]  [mm]\mathrm{d}x[/mm] = [mm]%5Cfrac%7B1%7D%7B2%7D%20%5Cint_1%5E%7B%5Cinfty%7D%20%5Cfrac%7B%5Cmathrm%7Bd%7Du%7D%7Bu%5E3%7D[/mm] = [mm]\lim_{b \to \infty}[/mm] ([mm]\frac{1}{2} \int_1^b \frac{\mathrm{d}u}{u^3}=\lim_{b \to \infty} [-\bruch{1}{2}x^2]_1^b=\lim_{b \to \infty}(-\bruch{1}{4}b^2+\bruch{1}{4}[/mm])-> [mm]\infty[/mm]

[notok] Die Stammfunktion zu [mm] $\bruch{1}{u^3} [/mm] \ = \ [mm] u^{-3}$ [/mm] lautet [mm] $-\bruch{1}{2}*u^{\red{-}2} [/mm] \ = \ [mm] -\bruch{1}{2*u^2}$ [/mm] .


Gruß
Loddar

Bezug
                        
Bezug
uneigentliche Integrale: zu b.)
Status: (Antwort) fertig Status 
Datum: 19:01 Mi 01.05.2013
Autor: Loddar

Hallo Laura!


> Bei b) sollte dir die Ableitung des Arcussinus auffallen.

>

> also die Ableitung ist ja

>

> Aus der Schule hab ich grob in Erinnerung:

>

> bruch mit zähler = ableitung vom nenner --> ln(|nenner|)
> Wenn das stimmt waere hier die Stammfunktion

[notok] Das stimmt überhaupt nicht.
Zudem kannst Du das doch schnell mittels Ableiten überprüfen.

Es gilt: [mm]\left[ \ \arccos(x) \ \right]' \ = \ -\bruch{1}{\wurzel{1-x^2}[/mm] .

Substituiere also: [mm]u \ := \ \arccos(x)[/mm] .


Gruß
Loddar

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]