matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegralrechnungunbestimmtes Integral
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Integralrechnung" - unbestimmtes Integral
unbestimmtes Integral < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

unbestimmtes Integral: substition
Status: (Frage) beantwortet Status 
Datum: 00:01 Fr 17.09.2010
Autor: christine89

Aufgabe
[mm] \integral_{}^{}\bruch{x^8}{x^5+1} [/mm] { dx}



Hey leute
ich soll die Stammfunktion angeben jedoch komm ich durch Substitution auf keine Lösung vllt. hat jemand eine Idee und kann mir bitte helfen ?

vielen dank schon mal an alle im voraus


        
Bezug
unbestimmtes Integral: Antwort
Status: (Antwort) fertig Status 
Datum: 00:27 Fr 17.09.2010
Autor: Blech

Hi,

> [mm]\integral_{a}^{b}\bruch{x^8}{x^5+1}[/mm] {f(x) dx}
>  Hey leute
> ich soll hier das unbestimmte Integral integrieren jedoch

meinst Du das bestimmte Integral von a nach b (wie geschrieben) oder wirklich das unbestimmte? Und was soll f(x) sein?

ciao
Stefan

Bezug
                
Bezug
unbestimmtes Integral: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 01:02 Fr 17.09.2010
Autor: christine89

hey
nein wirklich ein unbestimmtes ich hab mich leider mit den Editor hier vertan sorry ist mir zu spät aufgefallen

liebe grüße

Bezug
                        
Bezug
unbestimmtes Integral: Antwort
Status: (Antwort) fertig Status 
Datum: 01:09 Fr 17.09.2010
Autor: Blech

Dann bleibt immer noch meine Frage, was f(x) sein soll.

ciao
Stefan

Bezug
        
Bezug
unbestimmtes Integral: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 01:57 Fr 17.09.2010
Autor: qsxqsx

Hm, Ich würd mal als erstes schriftilich Teilen, sodass du

[mm] x^{3} [/mm] - [mm] \bruch{x^{3}}{x^{5} + 1} [/mm] erhälst.

Jetzt muss ich auch mal eine Weile nachdenken wie es weitergeht.
Würde versuchen zu substituieren...

Gruss

Bezug
        
Bezug
unbestimmtes Integral: Antwort
Status: (Antwort) fertig Status 
Datum: 02:34 Fr 17.09.2010
Autor: Gonozal_IX

Huhu Christine,

ich glaube kaum, dass du dieses Integral lösen sollst.

Die Lösung wäre:

[mm] \integral \bruch{x^8}{(x^5+1)} [/mm] dx = [mm] \bruch{1}{20} \left(5 x^4+(\sqrt{5}-1) \ln\left(x^2+ \bruch{1}{2} (\sqrt{5}-1) x+1\right)-(1+\sqrt{5}) \ln\left(x^2-\bruch{1}{2} (1+\sqrt{5}) x+1\right)+4 \ln(x+1)+2 \sqrt{10-2 \sqrt{5}}* \arctan\left(\bruch{(-4 x+\sqrt{5}+1)}{\sqrt(10-2 \sqrt{5})}\right)-2 \sqrt{2 (5+\sqrt{5})} *\arctan\left(\bruch{(4 x+\sqrt{5}-1)}{\sqrt{2 (5+\sqrt{5})}}\right)\right)+c [/mm]

Ich glaube kaum, dass das gewollt ist ;-)

MFG,
Gono.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]