matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegrieren und Differenzierenunbestimmtes Integral
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Integrieren und Differenzieren" - unbestimmtes Integral
unbestimmtes Integral < Integr.+Differenz. < Numerik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integrieren und Differenzieren"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

unbestimmtes Integral: Integration durch Substitution
Status: (Frage) beantwortet Status 
Datum: 23:37 Mi 27.06.2007
Autor: Sams

Aufgabe
Beispiel: [mm] \integral {x*e^{-x^2} dx} [/mm] = [mm] -\bruch{1}{2} \integral [/mm] -2*x* [mm] e^{-x^2} [/mm] dx. Wir setzen z= g(x) = [mm] -x^2, [/mm] dann ist dz=-2*x*dx.
[mm] \integral x*e^-x^2 [/mm] dx = [mm] -1/2\integral [/mm] -2 *x [mm] *e^-x^2 [/mm] dx = [mm] -1/2\integral e^z [/mm] dz = -1/2 * [mm] [e^z [/mm] +c] = -1/2 * [mm] e^-x^2 [/mm] + c

Halli Hallo,

ich hätte da mal ne Frage: :)

Wie kommt man auf die -1/2?
Die innere Funktion kann ich auch nicht sehen, geschweige denn die äußere. :'-(
Ich sehe ein Produkt aus x und e...
Meine Frage genau ist: wie komme ich genau auf das Ergebnis, also wenn möglich mit Zwischenschritten...  :-)

Wenn ich z= [mm] -x^2 [/mm] setze, habe ich mit z'=-2x, dann wäre für mich
[mm] f(z)=x*e^z. [/mm]

ich hätte noch anzubieten: [mm] z'=-2x=\bruch{dz}{dx} [/mm]
dx [mm] =\bruch{dz}{-2x} [/mm]

Ach ich weiß nicht, ich hab jetzt schon Stunden rumgerechnet ... pleeeease help! :-[


Vielen lieben Dank schon mal!

Grüßlis, Esther

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
unbestimmtes Integral: Antwort
Status: (Antwort) fertig Status 
Datum: 23:58 Mi 27.06.2007
Autor: schachuzipus

Hallo Esther,

du bist ja schon gaaaanz nah dran,

mit der Substitution [mm] \red{z}:=-x^2 [/mm] hast du richtig erkannt, dass [mm] dx=\red{\frac{dz}{-2x}} [/mm] ist

Das ins Integral eingesetzt:

[mm] \int{xe^{-x^2}dx}=\int{xe^{\red{z}}\red{\frac{dz}{-2x}}} [/mm]


Hier die x gegeneinander kürzen:

[mm] ...=\int{\frac{e^z}{-2}dz}=\int{-\frac{1}{2}e^zdz} [/mm]

Hier die multiplikative Konstante [mm] -\frac{1}{2} [/mm] vors Integral ziehen:

[mm] ...=-\frac{1}{2}\int{e^zdz} [/mm]


Ein etwas "sauberer" Weg - um zu vermeiden, dass beide Variablen x und z im substituierten Integral auftauchen wie oben (was hier nicht so schlimm ist, da sie sich direkt wegkürzen - ist, zunächst weiter umzuformen:

[mm] z:=-x^2\Rightarrow x=-\sqrt{z}\Rightarrow \frac{dx}{dz}=-\frac{1}{2\sqrt{z}}\Rightarrow dx=-\frac{dz}{2\sqrt{z}} [/mm]

Das dann einsetzen:

[mm] \int{xe^{-x^2}dx}=\int{-\sqrt{z}e^z\frac{dz}{2\sqrt{z}}} [/mm]

Wieder alles kürzen und [mm] -\frac{1}{2} [/mm] rausziehen:

[mm] ...=-\frac{1}{2}\int{e^zdz} [/mm]

Kommt also auf's selbe u lösende Integral raus


Das Integral ist ja dann einfach zu berechnen:

[mm] ..=-\frac{1}{2}e^z [/mm]

resubstituieren:

[mm] ...=-\frac{1}{2}e^{-x^2} [/mm]


LG

schachuzipus

Bezug
                
Bezug
unbestimmtes Integral: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:20 Do 28.06.2007
Autor: Sams

Hey Klasse!
1000 Dank!
LG, Esther

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integrieren und Differenzieren"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]