matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegrationstheorieunbestimmtes Integral
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Integrationstheorie" - unbestimmtes Integral
unbestimmtes Integral < Integrationstheorie < Maß/Integrat-Theorie < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

unbestimmtes Integral: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:31 So 25.03.2007
Autor: belimo

Aufgabe
Bestimmen Sie:

[mm] \integral_{}^{}{f(\bruch{1000}{x}+\bruch{25}{x^{2}}) dx} [/mm]

Hallo Leute

Wir haben letzte Woche mit dem unbestimmten Integral angefangen, und ich muss leider schon wieder um Rat fragen ;-)

Mein Lösungsansatz wäre der:
= [mm] 1000*ln(x)+25*ln(x^{2})+C [/mm]

Dummerweise steht in der Lösung:
= [mm] 1000*ln(x)-\bruch{25}{x}+C [/mm] und ich habe keine Ahnung warum das so ist.

Habt mir jemand einen Tipp? Danke schonmal im Voraus.

        
Bezug
unbestimmtes Integral: Antwort
Status: (Antwort) fertig Status 
Datum: 21:41 So 25.03.2007
Autor: Kroni

Hi,

du kannst dir hier das Integral in zwei Intergrale zerlegen:

[mm] \integral_{}^{}{1000*\bruch{1}{x} dx}+\integral_{}^{}{25*x^{-2} dx} [/mm]

Dann kannst du die konstanten Faktoren vors Integral ziehen, so dass du im Endeffekt nur die Stammfunktion zu 1/x und [mm] 1/x^2 [/mm] = [mm] x^{-2} [/mm] brechnen musst.

SF zu 1/x ist ln(x)

Gucken wir uns mal [mm] ln(x^2) [/mm] an.
Dazu wäre die Ableitung
[mm] 1/x^2 [/mm] *2x =2/x
Und das ist ja nicht [mm] 1/x^2 [/mm]

Gucken wir uns mal [mm] x^{-2} [/mm] an.
Das kannst du im Prinzip genauso integrieren, wie [mm] x^3, [/mm] da es sich ja genauso ableiten lässt.
gucken wir uns mal [mm] -x^{-1} [/mm] an.
Hiervon ist die Ableitung
[mm] -1*(-x^{-1-1})=x^{-2} [/mm]

[mm] 1/x^2 [/mm] bzw [mm] x^{-2} [/mm] ist ja nichts anderes als z.B. [mm] x^3, [/mm] es wird genau so behandelt.
Das gilt übrigens für alle Funktionen der Form [mm] x^n [/mm] , nur eben nicht für n=-1.

Slaín,

Kroni

Bezug
                
Bezug
unbestimmtes Integral: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:15 Mi 28.03.2007
Autor: belimo

Super, dankeschön!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]