matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegrationunbestimmte Integrale
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Integration" - unbestimmte Integrale
unbestimmte Integrale < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

unbestimmte Integrale: Idee
Status: (Frage) beantwortet Status 
Datum: 17:26 Mi 26.03.2014
Autor: prinzessin258

Aufgabe
Berechnen Sie folgenden unbestimmten Integral:
[mm] \integral_{}^{}{f(x) dx} (4x+2)\wurzel[3]{2x^2+2x-1}*dx [/mm]

Ich habe leider keinen Plan wie ich das angehen soll. Ich habe zb gesehen, dass man für bestimmte Ausdrücke  eine Variable nutzt. zb u = [mm] 2x^2+2x-1 [/mm] usw. , aber wozu? und wie kann mir das helfen.

Freue mich über jede Hilfe

Danke LG

        
Bezug
unbestimmte Integrale: Antwort
Status: (Antwort) fertig Status 
Datum: 17:30 Mi 26.03.2014
Autor: fred97


> Berechnen Sie folgenden unbestimmten Integral:
>  [mm]\integral_{}^{}{f(x) dx} (4x+2)\wurzel[3]{2x^2+2x-1}*dx[/mm]
>  
> Ich habe leider keinen Plan wie ich das angehen soll. Ich
> habe zb gesehen, dass man für bestimmte Ausdrücke  eine
> Variable nutzt. zb u = [mm]2x^2+2x-1[/mm] usw. , aber wozu? und wie
> kann mir das helfen.

Mit obiger Substitution [mm] u=2x^2+2x-1 [/mm] bekommst Du du=(4x+2)dx und damit

[mm] \integral_{}^{}{ (4x+2)\wurzel[3]{2x^2+2x-1}dx}= \integral_{}^{}{ \wurzel[3]{u}du} [/mm]

FRED

>
> Freue mich über jede Hilfe
>  
> Danke LG


Bezug
                
Bezug
unbestimmte Integrale: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:47 Mi 26.03.2014
Autor: prinzessin258

Ist das schon das Ergebnis?

was passierte mit dem 4x+2 vor der Wurzel?

Danke LG

Bezug
                        
Bezug
unbestimmte Integrale: noch nicht fertig
Status: (Antwort) fertig Status 
Datum: 17:53 Mi 26.03.2014
Autor: Loddar

Hallo Prinzessin!


> Ist das schon das Ergebnis?

Nein, das ist (selbstverständlich) noch nicht das gesuchte Ergebnis.
Es ist eine Stammfunktion gesucht, sprich: es muss noch integriert werden, mit der Variablen [mm]x_[/mm] und nicht [mm]u_[/mm] .


> was passierte mit dem 4x+2 vor der Wurzel?

Das hat sich rausgekürzt durch die Umwandlung des Differentials [mm]\mathrm{dx}[/mm] in [mm]\mathrm{du}[/mm] .


Gruß
Loddar

Bezug
                                
Bezug
unbestimmte Integrale: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 09:45 Do 27.03.2014
Autor: prinzessin258

Ich glaub ich habs jetzt :) Vielen Dank

Bezug
                        
Bezug
unbestimmte Integrale: Antwort
Status: (Antwort) fertig Status 
Datum: 12:57 Do 27.03.2014
Autor: Marcel

Hallo,

> Ist das schon das Ergebnis?

vielleicht einmal, damit Du diese

    []Substitution

besser verstehst, mal nochmal formal:

Es war:

    [mm] $\integral (4x+2)\wurzel[3]{2x^2+2x-1}dx\,.$ [/mm]

(Das [mm] "$f(x)\,dx$" [/mm] darin war überflüssig - vermutlich war das nur C&P...)

Mit

    [mm] $u(x):=2x^2+2x-1\,$ [/mm]

ist

    [mm] $u\,'(x)=4x+2\,.$ [/mm]

Hier bietet sich die Leibniznotation an:

    [mm] $\frac{du}{dx}=4x+2$ [/mm]

    [mm] $\iff$ [/mm]

    [mm] [red]($\red{\*}$)[/red] $\red{du=(4x+2)dx}\,.$ [/mm]

Damit

    [mm] $\integral (4x+2)\wurzel[3]{2x^2+2x-1}dx$ [/mm]

    [mm] $=\integral \wurzel[3]{2x^2+2x-1}\red{(4x+2)dx}$ [/mm]

    [mm] $\stackrel{\substack{u=2x^2+2x-1 \\ \red{(\*)}}}{=}\int \sqrt[3]{u}du\,.$ [/mm]

Nur mal als Hinweis:

Hätte da

    [mm] $\integral_a^b (4x+2)\wurzel[3]{2x^2+2x-1}dx$ [/mm]

gestanden, so hättest Du auch die Grenzen vermittels

    [mm] $x=a\,$ $\Rightarrow$ $u(x)=u(a)=2a^2+2a-1$ [/mm]

und

    [mm] $x=b\,$ $\Rightarrow$ $u(x)=u(b)=2b^2+2b-1$ [/mm]

ersetzen müssen:

    [mm] $\integral_a^b (4x+2)\wurzel[3]{2x^2+2x-1}dx$ [/mm]

    [mm] $=\integral_{u(a)}^{u(b)} \wurzel[3]{u}du$ [/mm]

    [mm] $=\integral_{2a^2+2a-1}^{2b^2+2b-1} \wurzel[3]{u}du\,.$ [/mm]

Und noch ergänzend zu oben:

Wenn Du

    [mm] $\int \sqrt[3]{u}du$ [/mm]

berechnet hast:

Vergesse nicht, dass Du eine Funktion in der Variablen [mm] $x\,$ [/mm] und nicht bzgl.
[mm] $u\,$ [/mm] am Ende stehen haben willst - das bedeutet:
Resubstitution nicht vergessen!

Gruß,
  Marcel

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]