matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegrationstheorieunbestimmt durch substitution
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Integrationstheorie" - unbestimmt durch substitution
unbestimmt durch substitution < Integrationstheorie < Maß/Integrat-Theorie < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

unbestimmt durch substitution: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:00 So 04.05.2008
Autor: chrisi99

Ich hätte eine etwas allgemeinere Frage:

kann man bei unbestimmten Integralen durch geeignete Substitution immer ein bestimmtes Integral erreichen (Grenzen mitsubstituieren)?

oder ist das in manchen Fällen nur durch Integration und nachfolgender Grenzwertbildung möglich?

bzw. hat es einen Nachteil durch Substitution zu verfahren, falls dies möglich ist (zusätzliche "Fallen")?

Lg
Chris

        
Bezug
unbestimmt durch substitution: Antwort
Status: (Antwort) fertig Status 
Datum: 21:27 So 04.05.2008
Autor: koepper

Hallo,

präzisiere doch bitte mal, was du meinst.
Ich verstehe die Frage nämlich leider überhaupt nicht.
Ein unbestimmtes Integral ist eine Menge von Funktionen.
Ein bestimmtes Integral ist eine Zahl.
Durch eine Substitution kommt man nie von einem zum anderen.
Meinst du evtl. uneigentliche Integrale?

LG
Will

Bezug
                
Bezug
unbestimmt durch substitution: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:13 So 04.05.2008
Autor: chrisi99

Verzeihung, du liegst richtig! Ich meine uneigentlich!

lg
Chris

Bezug
                        
Bezug
unbestimmt durch substitution: Antwort
Status: (Antwort) fertig Status 
Datum: 10:23 Mo 05.05.2008
Autor: koepper

Hallo chris,

bitte fasse dich präziser, wenn du eine Antwort möchtest.
Gib Beispiele für was du sagen möchstest.

LG
Will

Bezug
                                
Bezug
unbestimmt durch substitution: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:05 Mo 05.05.2008
Autor: chrisi99

Aufgabe
bestimme, ob das Integral konvergiert:


[mm] \integral_{1}^{\infty}{(\bruch{cos(1/x)}{\wurzel{x}}) dx} [/mm]

hier könnte ich etwa mit x=1/t substituieren, dann wären die Grenzen x=1/t-> t=1/x 1 bis 0 ...


darf man (ich) das?

Bezug
                                        
Bezug
unbestimmt durch substitution: ist erlaubt
Status: (Antwort) fertig Status 
Datum: 23:42 Mo 05.05.2008
Autor: Loddar

Hallo chrisi!


[ok] Das ist okay und erlaubt.

Alternativ kannst Du das Integral erst unbestimmt lösen und anschließend resubstituieren.


Gruß
Loddar


Bezug
                                                
Bezug
unbestimmt durch substitution: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:11 Di 06.05.2008
Autor: chrisi99

danke für eure Hilfe!

Bezug
        
Bezug
unbestimmt durch substitution: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:50 Di 06.05.2008
Autor: chrisi99

Aufgabe
[mm] \integral_{0}^{1}{ \bruch{arctan(\wurzel{x})}{\wurzel{2x}}dx} [/mm]

darf ich eigentlich dieses Integral einfach von a bis 1 integrieren und nach dem Integrieren a "null setzen" (was ja nicht unbedingt ein Grenzübergang ist). In diesem Fall macht es (vom Ergebnis) keinen Unterschied und erspart zudem eine Menge schreibarbeit (in jeder Zeile lim ...) ..

lg

Bezug
                
Bezug
unbestimmt durch substitution: Alternative
Status: (Antwort) fertig Status 
Datum: 23:17 Di 06.05.2008
Autor: Loddar

Hallo Chris!


Alternativ kannst Du das Integral auch erst unbestimmt lösen und erst am Ende die Integrationsgrenzen einsetzen bzw. die entsprechende Grenzwertbetrachtung durchführen.


Gruß
Loddar


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]