matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Stochastikunabhängigkeit
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Uni-Stochastik" - unabhängigkeit
unabhängigkeit < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

unabhängigkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:53 Mo 07.12.2009
Autor: simplify

Aufgabe
X,Y,Z seien [mm] \IZ-wertige [/mm] Zufallsvariablen, die auf dem gleichen Wahrscheinlichkeitsraum definiert sind. Man zeige:
X,Y sind genua dann unabhängig, wenn für alle k,l die Ereignisse {X = k }und { Y = l } unabhängig sind.

hallo,
also mit der unabhängigkeit von zv kann ich eigentlich schon was anfangen,also ich weiß,dass P(A [mm] \cap [/mm] B) = P(A) P(B) gelten muss.trotzdem fehlt mir hier ein ansatz an die aufgabe ranzugehen. kann mir da jemand helfen?

        
Bezug
unabhängigkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 05:05 Di 08.12.2009
Autor: felixf

Hallo!

> X,Y,Z seien [mm]\IZ-wertige[/mm] Zufallsvariablen, die auf dem
> gleichen Wahrscheinlichkeitsraum definiert sind. Man
> zeige:
>  X,Y sind genua dann unabhängig, wenn für alle k,l die
> Ereignisse {X = k }und { Y = l } unabhängig sind.
>
>  hallo,
>  also mit der unabhängigkeit von zv kann ich eigentlich
> schon was anfangen,also ich weiß,dass P(A [mm]\cap[/mm] B) = P(A)
> P(B) gelten muss.

Das $P(A [mm] \cap [/mm] B) = P(A) P(B)$ sagt, dass die Mengen $A$, $B$ unabhaengig sind.

Jetzt musst du mal nachschauen, wie die Unabhaengigkeit von Zufallsvariablen definiert ist! Ohne die Definition kommen wir hier nicht weiter.

> trotzdem fehlt mir hier ein ansatz an die
> aufgabe ranzugehen. kann mir da jemand helfen?

Du hast zwei Aequivalenzen zu zeigen.

Fang doch damit an, dass du annimmst, $X$ und $Y$ seien unabhaengig. Dann musst du zeigen, dass fuer ein beliebig gewaehltes Paar $k, [mm] \ell$ [/mm] die Mengen [mm] $\{ X = k \}$ [/mm] und [mm] $\{ Y = \ell \}$ [/mm] unabhaengig sind, d.h. dass $P(X = k, Y = [mm] \ell) [/mm] = P(X = k) P(Y = [mm] \ell)$ [/mm] ist.

LG Felix




Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]