matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenVK 58: Algebra 1Übungsserie 2, Aufgabe 3
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "VK 58: Algebra 1" - Übungsserie 2, Aufgabe 3
Übungsserie 2, Aufgabe 3 < VK 58: Alg 1 < Universität < Vorkurse < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "VK 58: Algebra 1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Übungsserie 2, Aufgabe 3: Aufgabe 3
Status: (Übungsaufgabe) Übungsaufgabe Status 
Datum: 19:13 So 11.03.2012
Autor: Blackwolf1990

Aufgabe
II-3: Sei $G$ eine endliche Gruppe und [mm] $\phi \in \operatorname{Aut} [/mm] G$ fixpunktfrei, d.h. aus [mm] $\phi(a) [/mm] = a$ für ein $a [mm] \in [/mm] G$ folgt $a = e$. Zeigen Sie: zu jedem $a [mm] \in [/mm] G$ ex. genau ein [mm] $b\in [/mm] G$ mit $a = [mm] b^{-1} \phi(b)$. [/mm]
Hinweis: Zeigen Sie zuerst [mm] $\psi [/mm] : [mm] b\mapsto b^{-1} \phi(b)$ [/mm] ist injektiv.



Dies ist eine Übungsaufgabe für den Vorkurs "Algebra" hier im Forum, die von allen Teilnehmern (und Interessenten) beantwortet werden kann. (Es handelt sich also um kein gewöhnliches Hilfegesuch!)

        
Bezug
Übungsserie 2, Aufgabe 3: Lösung
Status: (Frage) für Interessierte Status 
Datum: 18:39 So 26.07.2015
Autor: HJKweseleit

Injektivität von [mm] \psi: [/mm]

[mm] \psi(b)=\psi(c) [/mm]  
[mm] \Rightarrow b^{-1}\phi(b)=c^{-1}\phi(c) [/mm]  
[mm] \Rightarrow \phi(b)=bc^{-1}\phi(c) [/mm]
[mm] \Rightarrow \phi(b)\phi(c)^{-1}= bc^{-1} [/mm]
[mm] \Rightarrow \phi(b)\phi(c^{-1})= bc^{-1} [/mm]
[mm] \Rightarrow \phi(bc^{-1})= bc^{-1} [/mm]
[mm] \Rightarrow bc^{-1}=e [/mm]
[mm] \Rightarrow [/mm]   b=c

Da die Gruppe endlich ist, folgt aus der Injektivität die Surjektivität.

[mm] \Rightarrow [/mm]  Zu jedem [mm] a\in [/mm] G existiert ein [mm] b\in [/mm] G mit [mm] a=\psi(b)=b^{-1}\phi(b). [/mm]

Gäbe es zu irgendeinem a noch zusätzlich ein c mit
[mm] a=\psi(c)=c^{-1}\phi(c), [/mm] so wäre [mm] a=\psi(b)=\psi(c) [/mm] und [mm] \psi [/mm] nicht injektiv, was aber oben gezeigt wurde.

Also stimmt die Behauptung.





Bezug
        
Bezug
Übungsserie 2, Aufgabe 3: Frage (für Interessierte)
Status: (Frage) für Interessierte Status 
Datum: 00:13 Mo 12.03.2012
Autor: diddy449

Zeige, dass [mm] $\psi:G\to [/mm] G$ mit [mm] $\psi(b):=b^{-1}*\phi(b)$ [/mm] injektiv ist. Denn dann ist [mm] \psi [/mm] auch surjektiv, da G eine endliche Grundmenge ist, und damit wäre alles gezeigt.

[mm] $\psi$ [/mm] injektiv


[mm] \psi(a)=\psi(b) [/mm]
[mm] \Rightarrow e_G= \psi(a)*\psi(b)^{-1} [/mm] = [mm] a^{-1}*\phi(a)*(b^{-1}*\phi(b))^{-1} [/mm] = [mm] a^{-1}*\phi(a)*\phi(b^{-1})*b [/mm] = [mm] a^{-1}*\phi(a*b^{-1})*b [/mm]
[mm] \Rightarrow \phi(a*b^{-1})*b [/mm] = a
[mm] \Rightarrow \phi(a*b^{-1}) [/mm] = [mm] a*b^{-1} [/mm]
[mm] \Rightarrow a*b^{-1} [/mm] = [mm] e_G [/mm]
[mm] \Rightarrow [/mm] a = b $


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "VK 58: Algebra 1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]