matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGewöhnliche DifferentialgleichungenÜbertragungsfunktion
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Gewöhnliche Differentialgleichungen" - Übertragungsfunktion
Übertragungsfunktion < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Übertragungsfunktion: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 02:47 Di 10.01.2012
Autor: David90

Aufgabe
Ein Stromkreis, in welchem ein Bauteil mit ohmschen Widerstand R und ein Kondensator mit der Kapazität C in Reihe geschaltet sind, werde mit einer zeitlich veränderlichen Eingangsspannung e(t) betrieben. Es ist R, C > 0. Die Stromstärke i(t) löst dann für t [mm] \ge [/mm] 0 die Integralrechnung [mm] Ri(t)+\bruch{1}{C}\integral_{0}^{t}{i(t') dt'}=e(t) [/mm] zusammen mit der Vorgabe i(0)=0.
a) Wie lautet die zugehörige Übertragungsfunktion?
b) Berechnen Sie i im Fall, dass [mm] e(t)=-w\delta(t-t_{0}) [/mm] mit einer nicht-verschwindenden Konstanten w und einem späteren Zeitpunkt [mm] t_{0} [/mm] (d.h. [mm] t_{0} [/mm] >0) gilt.

Hinweise: Es gilt für eine Funktion f, die die Generalvoraussetzung erfüllt:
[mm] L[\integral_{0}^{t}{f(t') dt'}](s)=\bruch{1}{s}L[f(t)](s). [/mm]
Da eine Integralgleichung vorliegt, kann es durchaus sein, dass die Stromstärke einen [mm] \delta [/mm] - Stoß enthält.

Hi Leute,
ich komm bei der Aufgabe nicht klar:/ Mir fehlt dafür einfach das Verständnis.
Erstmal a)
Man führt eine Laplace-Trafo durch:
[mm] L[Ri(t)](s)+\bruch{1}{C}+L[\integral_{0}^{t}{i(t') dt'}](s)=L[e(t)](s) [/mm]
Mit L[Ri(t)](s)=RI(s), E(s)=L[e(t)](s), L[i(t)](s)=I(s) und dem Hinweis:
[mm] RI(s)+\bruch{1}{C}+\bruch{1}{s}I(s)=E(s) [/mm]
Ist das soweit richtig?
Wie macht man denn jetzt weiter?
Gruß David

        
Bezug
Übertragungsfunktion: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 18:58 Di 10.01.2012
Autor: Lentio

Hallo,

da würde mich die Antwort auch interessieren.^^

Hab für die Übertragungsfunktion:


[mm] L[Ri(t)](s)+\bruch{1}{C}L[\integral_{0}^{t}{i(t') dt'}](s)=L[e(t)](s) [/mm]



[mm] RI(s)+\bruch{1}{C*s}I(s)=E(s) [/mm]

[mm] I(s)=E(s)(R+\bruch{1}{C*s})^{-1} [/mm]
[mm] Uebertragungsfunktion=(R+\bruch{1}{C*s})^{-1}. [/mm]


Aber was mach ich jetzt zu b)?


mfg,
Lentio

Bezug
                
Bezug
Übertragungsfunktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:02 Mi 11.01.2012
Autor: Lentio

Hallo!


okay, ich habe jetzt mit L{e(t)}=L{-w* [mm] \delta(t-t_{0}) [/mm]  }
[mm] E(s)=-w*e^{-t_{0}*s} [/mm]

I(s)= [mm] (R+\bruch{1}{C*s})^{-1}*(-w*e^{-t_{0}*s}). [/mm]

Bekomme jetzt aber leider nicht mehr die Rücktransformation hin.

> mfg,
>  Lentio


Bezug
                        
Bezug
Übertragungsfunktion: Antwort
Status: (Antwort) fertig Status 
Datum: 14:12 Mi 11.01.2012
Autor: fencheltee

Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

> Hallo!
>  
>
> okay, ich habe jetzt mit L{e(t)}=L{-w* [mm]\delta(t-t_{0})[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

  }

>  [mm]E(s)=-w*e^{-t_{0}*s}[/mm]
>
> I(s)= [mm](R+\bruch{1}{C*s})^{-1}*(-w*e^{-t_{0}*s}).[/mm]
>  

hallo,
betrachte [mm] (R+1/(Cs))^{-1} [/mm] als F(s) und betrachte den [mm] e^s [/mm] term als verschiebung im zeitbereich

> Bekomme jetzt aber leider nicht mehr die
> Rücktransformation hin.
>  
> > mfg,
>  >  Lentio
>  

gruß tee

Bezug
                                
Bezug
Übertragungsfunktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:20 Mi 11.01.2012
Autor: Lentio



Hallo und danke für die Antwort fencheltee.

Also

[mm] I(s)=(R+(cs)^{-1})^{-1}(-we^{-st_{0}}) [/mm]
[mm] =(\bruch{s}{Rs+c^{-1}})(-we^{-st_{0}}) [/mm]
[mm] =(\bruch{Rs}{(Rs+c^{-1})R})(-we^{-st_{0}}) [/mm]
[mm] =(\bruch{Rs+c^{-1}}{(Rs+c^{-1})R}-\bruch{c^{-1}}{(Rs+c^{-1})R})(-we^{-st_{0}}) [/mm]
[mm] =(\bruch{1}{R}-\bruch{c^{-1}}{R^2(s+(cR)^{-1}})(-we^{-st_{0}}) [/mm]
[mm] L^{-1}[I(s)]=L^{-1}[(\bruch{1}{R}-\bruch{c^{-1}}{R^2(s+(cR)^{-1}})(-we^{-st_{0}})] [/mm]
[mm] i(t)=-w*u_{t_{0}}(t)[R^{-1}\delta(t)-(cR)^{-1}e^{-(Rc)^{-1}}] [/mm] vielleicht?

mfg,
lentio

Bezug
                                        
Bezug
Übertragungsfunktion: Antwort
Status: (Antwort) fertig Status 
Datum: 19:42 Mi 11.01.2012
Autor: fencheltee


>
>
> Hallo und danke für die Antwort fencheltee.
>  
> Also
>  
> [mm]I(s)=(R+(cs)^{-1})^{-1}(-we^{-st_{0}})[/mm]
>  [mm]=(\bruch{s}{Rs+c^{-1}})(-we^{-st_{0}})[/mm]
>  [mm]=(\bruch{Rs}{(Rs+c^{-1})R})(-we^{-st_{0}})[/mm]
>  
> [mm]=(\bruch{Rs+c^{-1}}{(Rs+c^{-1})R}-\bruch{c^{-1}}{(Rs+c^{-1})R})(-we^{-st_{0}})[/mm]
>  
> [mm]=(\bruch{1}{R}-\bruch{c^{-1}}{R^2(s+(cR)^{-1}})(-we^{-st_{0}})[/mm]
>  
> [mm]L^{-1}[I(s)]=L^{-1}[(\bruch{1}{R}-\bruch{c^{-1}}{R^2(s+(cR)^{-1}})(-we^{-st_{0}})][/mm]
>  
> [mm]i(t)=-w*u_{t_{0}}(t)[R^{-1}\delta(t)-(cR)^{-1}e^{-(Rc)^{-1}}][/mm]
> vielleicht?
>  
> mfg,
>  lentio

hallo,
das sieht fast ok aus:
[mm] u_t [/mm] gibt es ja nicht wirklich, da w für den wert steht.
zusätzlich fehlt bei der e-funktion ein "t" im exponenten,
sowie ein [mm] R^2 [/mm] im nenner vor der e-funktion.
und am ende fehlt die verschiebung durch den [mm] exp(-st_o) [/mm] term, der dann eine verschiebung aller "t's" um [mm] t-t_0 [/mm] zur folge hat. was ja auch logisch ist, wenn ein dirac-impuls erst zur zeit [mm] t_0 [/mm] kommt, kann auch die antwort darauf frühestens zum zeitpunkt [mm] t_0 [/mm] kommen

gruß tee

Bezug
                                                
Bezug
Übertragungsfunktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 07:24 Fr 13.01.2012
Autor: Lentio

Hallo und danke!

Okay, also so :




[mm] i(t)=-w[R^{-1}\delta(t-t_{0})-(c)^{-1}R^{-2}e^{-(Rc)^{-1}}] [/mm] ?

mfg,
lentio

Bezug
                                                        
Bezug
Übertragungsfunktion: Antwort
Status: (Antwort) fertig Status 
Datum: 09:16 Fr 13.01.2012
Autor: fencheltee


> Hallo und danke!
>  
> Okay, also so :
>  
>
>
>
> [mm]i(t)=-w[R^{-1}\delta(t-t_{0})-(c)^{-1}R^{-2}e^{-(Rc)^{-1}}][/mm]
> ?
>  
> mfg,
>  lentio

hallo, es fehlt immer noch das t im exponenten (bzw [mm] t-t_0 [/mm] wegen der verschiebung)

gruß tee

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]