matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenTrigonometrische Funktionenüberprüfung. v. trigogleichung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Trigonometrische Funktionen" - überprüfung. v. trigogleichung
überprüfung. v. trigogleichung < Trigonometr. Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Trigonometrische Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

überprüfung. v. trigogleichung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:24 Mi 07.10.2009
Autor: martina.m18

gegeben.

[mm] \bruch{sin(2\alpha)}{1-cos(2\alpha)}=cot\alpha [/mm]

wie muss ich da vorgehen, über additonstheroreme finde ich z.B
[mm] sin2\alpha [/mm] und [mm] cos2\alpha [/mm] aus audruck eines doppelten winkels, aber ich weis nicht wie ich nun das ganze mit [mm] cot\alpha [/mm] in verbindung bringen muss, bzw wie man an eine solche aufgabe analytisch und systematisch herangehen muss..

danke im v.

        
Bezug
überprüfung. v. trigogleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 16:35 Mi 07.10.2009
Autor: polly68

Additionstheoreme ist schon das richtige Stichwort! Wenn Du im Nenner verwendest cos2a=1-2sin^2a, dann kannst Du (nach ein bisschen Umformen im Nenner - vorsicht, Klammer setzen) kürzen und es bleibt bald nur noch cota übrig!
LG polly

Bezug
                
Bezug
überprüfung. v. trigogleichung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:08 Mi 07.10.2009
Autor: martina.m18

sorry ich kann mir nicht richtig vorstellen wo ich anfangen muss,

ich muss doch zuerst

meinen

[mm] cot\alpha [/mm] = [mm] \bruch{cos \alpha}{ sin \alpha} [/mm]

anschauen und dann meinen Nenner entsprechend umformen, mein Problem ist dass ich bei solchen aufgaben keine vorgehensschema habe

Bezug
                        
Bezug
überprüfung. v. trigogleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 17:25 Mi 07.10.2009
Autor: blascowitz

Setze doch erstmal die von polly vorgeschlage umformung in den Nenner ein. (Klammer nicht vergessen) Verwende im Zähler [mm] $\sin(2a)=2\sin(a)\cos(a)$(dies [/mm] ist das Additionstheorem [mm] $\sin(x+y)=\sin(x)\cos(y)+\cos(x)\sin(y)$). [/mm]
Einsetzen und kürzen

Grüße

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Trigonometrische Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]