matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGewöhnliche DifferentialgleichungenÜberprüfen von DGs
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Gewöhnliche Differentialgleichungen" - Überprüfen von DGs
Überprüfen von DGs < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Überprüfen von DGs: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:32 Di 29.03.2011
Autor: asulu211

Aufgabe
Gegeben sei die  DG y' = [mm] x^{3} e^{y} [/mm]
a) Was ist die Definitionsmenge der DG?
b) Geben Sie die allgemeine Lösung der DG an.
c) Überprüfen Sie, dass die von Ihnen gefundene Lösung die DG erfüllt.

Hallo!
Punkt a und b hab ich bereits erledigt:
D = IR
y = ln [mm] (x^{4}/4) [/mm] + ln(C)

Beim Punkt C bin weiß ich nicht genau wie ich dabei das y' bekomme!?
um den ln wegzubekommen, hab ich folgendes gemacht:
[mm] e^{y} [/mm] = [mm] x^{4}/4 [/mm] + C
[mm] e^{y} [/mm] abgeleitet ergibt wieder [mm] e^{y}, [/mm] und [mm] x^{4}/4 [/mm] abgeleitet ergibt [mm] x^3; [/mm] also würde das schon mal stimmen!
nur woher bekomme ich das y'?
lg

        
Bezug
Überprüfen von DGs: Antwort
Status: (Antwort) fertig Status 
Datum: 11:41 Di 29.03.2011
Autor: schachuzipus

Hallo asulu211,


> Gegeben sei die  DG y' = [mm]x^{3} e^{y}[/mm]
>  a) Was ist die
> Definitionsmenge der DG?
>  b) Geben Sie die allgemeine Lösung der DG an.
>  c) Überprüfen Sie, dass die von Ihnen gefundene Lösung
> die DG erfüllt.
>  Hallo!
>  Punkt a und b hab ich bereits erledigt:
>  D = IR [ok]
>  y = ln [mm](x^{4}/4)[/mm] + ln(C)

Nein, das solltest du nochmal nach- bzw. hier vorrechnen.

Beachte auch [mm] $\ln(a+b)\neq \ln(a)+\ln(b)$ [/mm]

>  
> Beim Punkt C bin weiß ich nicht genau wie ich dabei das y'
> bekomme!?
>  um den ln wegzubekommen, hab ich folgendes gemacht:
> [mm]e^{y}[/mm] = [mm]x^{4}/4[/mm] + C
>  [mm]e^{y}[/mm] abgeleitet ergibt wieder [mm]e^{y},[/mm] und [mm]x^{4}/4[/mm]
> abgeleitet ergibt [mm]x^3;[/mm] also würde das schon mal stimmen!
>  nur woher bekomme ich das y'?

Na, mit der falschen Lösung kann das nicht passen.

Ansonsten Leite die (dann hoffentlich richtige) Lösung $y$ ab, dann hast du die linke Seite $y'$.

Dann die rechte Seite ausrechnen und vergleichen ...

>  lg

Gruß

schachuzipus


Bezug
                
Bezug
Überprüfen von DGs: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:08 Di 29.03.2011
Autor: asulu211

ich rechne das mal vor:
dy/dx = [mm] x^{3} e^{y} [/mm]
[mm] \integral_{}^{}{e^{-y} dy} [/mm] = [mm] \integral_{}^{}{ x^{3} dx} [/mm]
[mm] -e^{-y} [/mm] = [mm] x^{4}/4 [/mm] +C
e{-y} = [mm] -x^{4} [/mm] /4 - C
und da ist mir dann der fehler unterlaufen...
also müsste es heißen:
-y = ln( [mm] -x^{4}/4 [/mm] - C)
y= - ln( [mm] -x^{4}/4 [/mm] - C)
das müsste jetzt stimmen, oder?

und wie funktioniert das jetzt genau mit dem y'?
wenn ich einfach das y gleich y' setzte, dann hab ich ja kein [mm] e^y, [/mm] oder?


Bezug
                        
Bezug
Überprüfen von DGs: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:11 Di 29.03.2011
Autor: asulu211

ist eigentlich [mm] -ln(-x^{4}/4 [/mm] -C) das gleiche wie [mm] ln(x^{4}/4 [/mm] + C) ?

Bezug
                                
Bezug
Überprüfen von DGs: Antwort
Status: (Antwort) fertig Status 
Datum: 12:28 Di 29.03.2011
Autor: schachuzipus

Hallo nochmal,


> ist eigentlich [mm]-ln(-x^{4}/4[/mm] -C) das gleiche wie [mm]ln(x^{4}/4[/mm] + C) ?

Oh Nein!

Es ist wegen [mm]\ln\left(a^b\right)=b\cdot{}\ln(a)[/mm] dann speziell mit [mm]b=-1[/mm]

vielmehr [mm]-\ln(a)=\ln\left(a^{-1}\right)=\ln\left(\frac{1}{a}\right)[/mm]

Gruß

schachuzipus


Bezug
                        
Bezug
Überprüfen von DGs: Antwort
Status: (Antwort) fertig Status 
Datum: 12:27 Di 29.03.2011
Autor: MathePower

Hallo asulu211,

> ich rechne das mal vor:
>  dy/dx = [mm]x^{3} e^{y}[/mm]
>  [mm]\integral_{}^{}{e^{-y} dy}[/mm] =
> [mm]\integral_{}^{}{ x^{3} dx}[/mm]
>  [mm]-e^{-y}[/mm] = [mm]x^{4}/4[/mm] +C
>  e{-y} = [mm]-x^{4}[/mm] /4 - C
>  und da ist mir dann der fehler unterlaufen...
>  also müsste es heißen:
>  -y = ln( [mm]-x^{4}/4[/mm] - C)
>  y= - ln( [mm]-x^{4}/4[/mm] - C)
>  das müsste jetzt stimmen, oder?


Ja, das stimmt auch. [ok]


>  
> und wie funktioniert das jetzt genau mit dem y'?


Die Lösung y setzt Du jetzt in die DGL ein.


>  wenn ich einfach das y gleich y' setzte, dann hab ich ja
> kein [mm]e^y,[/mm] oder?
>


Gruss
MathePower  

Bezug
                                
Bezug
Überprüfen von DGs: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:55 Di 29.03.2011
Autor: asulu211

Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

so?:
y'= x^{3} * e^{-ln(-x^{4}/4 - C}
y' = x^{3} * 1/ e^{ln(-x^{4}/4-C}
y' = x^{3} * 1/(x^{4}/4 -C}

und was muss ich jetzt weiter machen?

was muss dann überhaupt heraukommen, damit die DG erfüllt wird?

Bezug
                                        
Bezug
Überprüfen von DGs: Antwort
Status: (Antwort) fertig Status 
Datum: 14:25 Di 29.03.2011
Autor: fred97

Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

> Eingabefehler: "{" und "}" müssen immer paarweise
> auftreten, es wurde aber ein Teil ohne Entsprechung
> gefunden (siehe rote Markierung)
>  
> so?:
>  y'= x^{3} * e^{-ln(-x^{4}/4 - C}
>  y' = x^{3} * 1/ e^{ln(-x^{4}/4-C}
>  y' = x^{3} * 1/(x^{4}/4 -C}
>  
> und was muss ich jetzt weiter machen?
>  
> was muss dann überhaupt heraukommen, damit die DG erfüllt
> wird?


Nimm die allgemeine Lösung y Deiner DGL her. Berechne y'. Dann berechne $x^3e^y$. Dann schaust Du ob

                 $y'=x^3e^y$

gilt. Wenn ja, erfüllt y die DGL, anderenfalls nicht.

FRED


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]