matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenReelle Analysis mehrerer VeränderlichenÜberprüfen ob Mannigfaltigkeit
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Reelle Analysis mehrerer Veränderlichen" - Überprüfen ob Mannigfaltigkeit
Überprüfen ob Mannigfaltigkeit < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Überprüfen ob Mannigfaltigkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:11 Di 15.04.2014
Autor: ralpho

Aufgabe
[mm] $\text{Für welche c definiert } x^2+y^2-z^6=c \text{ eine Mannigfaltigkeit im } \mathbb{R}^3$ [/mm]

Hallo,
Ich habe obige Aufgabe gegeben. Ich habe das ganze nun in eine implizit def. Form umgeschrieben [mm] $M=\{(x,y,z): x^2+y^2-z^6-c=0\}$. [/mm] Nun muss ja gelten, dass $dF=(2x,2y,-6z)$ vollen Rang hat. $dF$ verschwindet nur bei $(0,0,0)$, dies liegt aber für alle $c [mm] \not= [/mm] 0$ nicht in M und somit ist die Funktion für alle diese c eine Mannigfaltigkeit.

Ist diese Vorgehensweise so korrekt?

Danke
Ralph

        
Bezug
Überprüfen ob Mannigfaltigkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 18:42 Di 15.04.2014
Autor: Richie1401

Hallo,

> [mm]\text{Für welche c definiert } x^2+y^2-z^6=c \text{ eine Mannigfaltigkeit im } \mathbb{R}^3[/mm]

Ich bezeichne mal obige Punkte, die die Gleichung erfüllen mit N.

>  
> Hallo,
>  Ich habe obige Aufgabe gegeben. Ich habe das ganze nun in
> eine implizit def. Form umgeschrieben [mm]M=\{(x,y,z): x^2+y^2-z^6-c=0\}[/mm].
> Nun muss ja gelten, dass [mm]dF=(2x,2y,-6z)[/mm] vollen Rang hat.

Das Differential hat die Form [mm] DF=(2x,2y,-6z^5). [/mm]

Dir ist das ^5 abhanden gekommen.

> [mm]dF[/mm]
> verschwindet nur bei [mm](0,0,0)[/mm], dies liegt aber für alle [mm]c \not= 0[/mm]
> nicht in M und somit ist die Funktion für alle diese c
> eine Mannigfaltigkeit.

Ja, also [mm] c\not=0. [/mm]

Wobei eigentlich noch zu prüfen wäre:
In jeden Punkt der Menge gibt es offene Umgebung U des [mm] \IR^3 [/mm] und eine
reguläre Abb [mm] F:U\to\IR^1, [/mm] s.d. gilt: [mm] F^{-1}(0)=U\cap{N} [/mm]

>  
> Ist diese Vorgehensweise so korrekt?
>  
> Danke
>  Ralph


Bezug
                
Bezug
Überprüfen ob Mannigfaltigkeit: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 08:54 Do 17.04.2014
Autor: ralpho

Danke! :)
Der fehler mit der Ableitung ist natürlich blöd.

Die zweite Bedingung werde ich mir nochmal anschauen!

lg

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]