matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenProzesse und MatrizenÜbergangsmatrix Aussterben
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Prozesse und Matrizen" - Übergangsmatrix Aussterben
Übergangsmatrix Aussterben < Prozesse+Matrizen < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Prozesse und Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Übergangsmatrix Aussterben: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 19:47 Mo 01.12.2008
Autor: gaugau

Aufgabe
Unter bestimmten Bedingungen legt ein Weibchen (W) der Käferart monatlich im Mittel 500 Eier (E), von denen sich innerhalb eines Monats ein Viertel der Larven (L) entwickelt. 10% der Larven verpuppen sich (P) wiederum innerhalb eines Monats. Die übrigen Eier und Larven werden gefressen oder sterben ab. Aus etwa 40% der Puppen entwickeln sich nach einem Monat Weibchen, die übrigen Puppen werden zu Männchen.

Zur Bekämpfung dieser Schädlinge wird ein Pestizid entwickelt.
Es beeinträchtigt die Fortpflanzung der Käfer auf einer Weise, dass die Weibchen nur noch eine kleinere Anzahl von Eiern ablegen können. Ermitteln Sie die bedingungen, unter welcher die Population langfrisig aussterben wird. Geben Sie dazu an, welche Anzahl von Eiern ein Käferweibchen höchstens ablegen darf.

Die dazugehörige Matrix (von mir entwickelt):
M = [mm] \pmat{ 0 & 0 & 0 & 500 \\ 0.25 & 0 & 0 & 0 \\ 0 & 0.1 & 0 & 0 \\ 0 & 0 & 0.4 & 0} [/mm]

langfristige Entwicklung (nach vier Monaten, wenn die Eier der Weibchen wieder zu Weibchen geworden sind)
[mm] M^{4} [/mm] = [mm] \pmat{ 5 & 0 & 0 & 0 \\ 0 & 5 & 0 & 0 \\ 0 & 0 & 5 & 0 \\ 0 & 0 & 0 & 5} [/mm]

Mit Hilfe der zweiten Matrix will ich nun die im zweiten Paragraphen formulierte Aufgabe lösen, wobei ich allerdings immer nur den Nullvektor erhalte, was ja eigentlich Schwachsinn ist.
Was ich gemacht habe ist, dass ich folgende Gleichung aufgestellt habe:

[mm] M^{4} \* \vektor{x_{1} \\ x_{2} \\ x_{3} \\ 0} [/mm] = [mm] \vektor{x_{1} \\ x_{2} \\ x_{3} \\ 0} [/mm]

Damit die Population ausstirbt, muss ja die Anzahl der Weibchen Null sein... oder?

Vielen Dank für eure Hilfe!

        
Bezug
Übergangsmatrix Aussterben: Antwort
Status: (Antwort) fertig Status 
Datum: 20:08 Mo 01.12.2008
Autor: moody


>  Die dazugehörige Matrix (von mir entwickelt):
>  M = [mm]\pmat{ 0 & 0 & 0 & 500 \\ 0.25 & 0 & 0 & 0 \\ 0 & 0.1 & 0 & 0 \\ 0 & 0 & 0.4 & 0}[/mm]

Ist meiner Meinung nach richtig so.

Aber wenn du die Matrix nach 5 Generationen berachtest und in die Ausgangsmatrix einsetzt kann doch nix vernünftiges dabei rauskommen.

Du musst dir überlegen dass die entstehende Population im Eierlegen beeinträchtigt ist, inwiefern muss sich diese Beeinträchtigung auswirken, dass nach X Generationen die Population ausstirbt.

Bezug
                
Bezug
Übergangsmatrix Aussterben: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 20:20 Mo 01.12.2008
Autor: gaugau


> Aber wenn du die Matrix nach 5 Generationen berachtest und
> in die Ausgangsmatrix einsetzt kann doch nix vernünftiges
> dabei rauskommen.

Wie kann ich eine Matrix in eine Matrix einsetzen? Das verwirrt mich irgendwie...

> Du musst dir überlegen dass die entstehende Population im
> Eierlegen beeinträchtigt ist, inwiefern muss sich diese
> Beeinträchtigung auswirken, dass nach X Generationen die
> Population ausstirbt.

Hiermit hast du mir leider nocht nicht den wichtigen Tipp gegeben... Ich habe Probleme die Gleichung aufzustellen. Weil ich muss doch die Zahl der Eier, die ein Weibchen legen kann, durch a ersetzen. Diese modifizierte Matrix muss ich mit einem x-Vektor multiplizieren und mit dem Nullvektor gleichsetzen, da die Population ja aussterben soll. Leider bekomme ich kein zu lösendes LGS heraus....

Bezug
                        
Bezug
Übergangsmatrix Aussterben: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:32 Mo 01.12.2008
Autor: moody


> Wie kann ich eine Matrix in eine Matrix einsetzen? Das
> verwirrt mich irgendwie...

Sorry, war vielleicht falsch ausgedrückt. Ich wollte damit sagen, dass es dich nicht weiterbringt wenn du nur mit der Matrix und der Matrix nach 5 Populationen weiterrechnest.

Bezug
                        
Bezug
Übergangsmatrix Aussterben: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:20 Mi 03.12.2008
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
        
Bezug
Übergangsmatrix Aussterben: Antwort
Status: (Antwort) fertig Status 
Datum: 18:13 Mi 03.12.2008
Autor: chrisno

Beim AUssterben werden es immer weniger. Ob es mit dieser Methode wirklich Null werden, lassen wir erst einmal offen.

Entscheidend ist erst einmal, dass es weniger werden.

Ersetze die 500 in der Matrix durch w.
Dann rechne nach, was mit irgendeiner Population nach einem
Monat passiert. Nach zwei Monaten, ....

Nun steckt das w überall in den Populationen drin.
Schau Dir das an. Was passiert z.B. bei w = 1?

So weit erst einmal.

Bezug
        
Bezug
Übergangsmatrix Aussterben: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:20 Mi 03.12.2008
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Prozesse und Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]