matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Komplexe AnalysisÜberführung v. Punkten
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Uni-Komplexe Analysis" - Überführung v. Punkten
Überführung v. Punkten < komplex < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Überführung v. Punkten: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:36 Do 24.05.2007
Autor: Infinity1982

Aufgabe
Zu zeigen:
3 getrennte Punkte [mm] z_{1}, z_{2}, z_{3} [/mm] können immer durch genau eine Möb.transf. b = l(z) in 3 vorgeschriebene Punkte [mm] v_{1}, v_{2}, v_{3} [/mm] überführt werden.

Hallo,
kann mir jemand bei der Aufgabe helfen? Ich weiß nicht, wie ich vorgehen soll. :-(
Ich stelle mir vor, dass die 3 Punkte sich in einer Ebene befinden, und dass v = l(z) = [mm] \bruch{az+b}{cz+d} [/mm] gilt. Und wie  mache ich jetzt daraus die gesuchte Abbildung? Kann ich einfach festlegen, dass [mm] z_{1} [/mm] auf [mm] v_{1}, z_{2} [/mm] auf [mm] v_{2} [/mm] usw. abgebildet wird, also dass [mm] v_{1} [/mm] = [mm] l(z_{1}) [/mm] = [mm] \bruch{az_{1}+b}{cz_{1}+d} [/mm] usw?
Es wäre schön, wenn mir jemand erklären könnte, was ich bei der Aufgabe zu tun hätte.
VIELEN DANK.
Gruß, Infinity

        
Bezug
Überführung v. Punkten: Antwort
Status: (Antwort) fertig Status 
Datum: 19:06 Do 24.05.2007
Autor: Hund

Hallo,

dein Ansatz ist richtig. Du setzt einfach [mm] l(z_{i})=v_{i} [/mm] i=1,2,3. Wenn du das nun ausführlich hinschreibst, hast du 3 Gleichungen, indenen die Konstanten a,b,c,d der Möbius-Transformation auftauchen. Deine Aufgabe ist es nun diese Konstanten in Abhängigkeit von den gegebenen 6 Punkten zubestimmen. Dazu löst du das obige Gleichungssystem.

Ich hoffe, es hat dir geholfen.

Gruß
Hund

Bezug
                
Bezug
Überführung v. Punkten: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 21:25 Do 24.05.2007
Autor: Infinity1982

Hallo,
danke für den Hinweis. Ich habe nun da stehen:
[mm] v_{1} [/mm] = [mm] \bruch{az_{1}+b}{cz_{1}+d} [/mm]
[mm] v_{2} [/mm] = [mm] \bruch{az_{2}+b}{cz_{2}+d} [/mm]
[mm] v_{3} [/mm] = [mm] \bruch{az_{3}+b}{cz_{3}+d} [/mm]

Aber irgendwie stell ich mich einfach zu blöd an, dieses Gleichungssystem mit 4 Unbekannten zu lösen (ist schon lange her, wo ich das letzte mal sowas gemacht hab... :-)).
Also ich habs nun so gemacht, bin mir aber unsicher, ich hoffe du hilfst mir weiter:
[mm] (cz_{1}+d)*v_{1} [/mm] = [mm] az_{1}+b \gdw cz_{1}v_{1}+dv_{1} [/mm] = [mm] az_{1}+b [/mm]
Ich habe jetzt einfach nach einem Buchstaben meiner Wahl aufgelöst, z.B. c, also c = [mm] \bruch{az_{1}+b-dv_{1}}{z_{1}v_{1}}, [/mm] das analog für die 2. und 3. Gleichung, also c = [mm] \bruch{az_{2}+b-dv_{2}}{z_{2}v_{2}} [/mm] und c = [mm] \bruch{az_{3}+b-dv_{3}}{z_{3}v_{3}}, [/mm] dann habe ich alles gleichgesetzt, und erhalte: c = [mm] \bruch{az_{1}+b-dv_{1}}{z_{1}v_{1}} [/mm] = [mm] \bruch{az_{2}+b-dv_{2}}{z_{2}v_{2}} [/mm] = [mm] \bruch{az_{3}+b-dv_{3}}{z_{3}v_{3}} [/mm]
Wie muss ich hier nun weiter vorgehen? Analog würde ich das jetzt für die Koeffizienten a und b auch machen. Aber viel hat mir das nicht gebracht, oder? Weil immer jeweils 2 Konstanten  unbekannt sind, z.b. ist jetzt in der Gleichung nach c aufgelöst a und b unbekannt.
Hoffentlich kann mir jemand weiterhelfen.
DANKE!
Gruß, Infinity

Bezug
                        
Bezug
Überführung v. Punkten: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:21 Do 31.05.2007
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]