matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGewöhnliche DifferentialgleichungenÜbereinstimmung von LDFG
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Gewöhnliche Differentialgleichungen" - Übereinstimmung von LDFG
Übereinstimmung von LDFG < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Übereinstimmung von LDFG: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:01 Fr 22.06.2012
Autor: petropen

Aufgabe
Zeigen Sie, dass die charakteristische Gleichung einer linearen homogenen Differentialgleichung der
Ordnung n mit konstanten Koeffizienten mit dem charakteristischen Polynom der Koeffizientenmatrix des assoziierten
Differentialgleichungssystems erster Ordnung bis auf das Vorzeichen übereinstimmt.



Hallo,

hat jemand eine Idee, wie das gehen soll?

Ich habe diese Frage auch in folgenden Foren auf anderen Internetseiten gestellt:
http://www.onlinemathe.de/forum/charakt-Gleichung-und-charakt-Polynom

        
Bezug
Übereinstimmung von LDFG: Antwort
Status: (Antwort) fertig Status 
Datum: 12:13 Fr 22.06.2012
Autor: Diophant

Hallo und

[willkommenmr]

> Zeigen Sie, dass die charakteristische Gleichung einer
> linearen homogenen Differentialgleichung der
> Ordnung n mit konstanten Koeffizienten mit dem
> charakteristischen Polynom der Koeffizientenmatrix des
> assoziierten
> Differentialgleichungssystems erster Ordnung bis auf das
> Vorzeichen übereinstimmt.
> Hallo,
>
> hat jemand eine Idee, wie das gehen soll?

Definiere dir Hilfsfunktionen der Folgenden Art:

[mm] y_0(x)=y(x) [/mm]
[mm] y_1(x)=y'(x) [/mm]
[mm] y_2(x)=y''(x)=\left(y_1(x)\right)' [/mm]
.
.
.
[mm] y_{n-1}(x)=y^{(n-1)}(x)=\left(y_{n-2}(x)\right)' [/mm]

Drücke zusätzlich noch die 1. Ableitung der Hilfsfunktion [mm] y_{n-1} [/mm] als Vielfaches der Hilfsfunktionen [mm] y_i [/mm] aus. Jetzt hast du ein lineares homogenes System erster Ordnung. Mit seiner Koeffizientenmatrix erhältst du die charakteristsiche Gleichung, welche mit derjenigen der zugehörigen DGL n. Ordnung eben bis auf Vorzeichen übereinsteimmen sollte.


Gruß, Diophant

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]