matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-SonstigesÜberabzählbare Zahlensysteme(2
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Uni-Sonstiges" - Überabzählbare Zahlensysteme(2
Überabzählbare Zahlensysteme(2 < Sonstiges < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Überabzählbare Zahlensysteme(2: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 15:00 Mi 17.11.2010
Autor: RWBK

Bestimme Infimum und Supremum der Mengen

[mm] M1={x\varepsilon \IR; \bruch{x^{2}}{1+x^{2}}< \bruch{1}{2}} [/mm]

M2= [mm] {y\varepsilon \IR; y= 1+x*|x|, -1

Bei der ersten Aufgabe wollte ich erst mal wissen obdas so richtig ist??

[mm] x\varepsilon \IR; \bruch{x^{2}}{1+x^{2}}< \bruch{1}{2} \gdw [/mm] 2 [mm] x^{2}<1+x^{2} \gdw x^{2} [/mm] < 1
x1=1
x2=-1

-1<x<1

inf(M1)=-1
sup(M1)=1

Jetzt komme ich zu Aufgabe 2 da wird uns folgende Lösung präsentiert wozu ich eine frage hätte. Nämlich wird das |x| einmal zu x bzw -x weil wir unterschiedliche Bereiche ansehen einmal von (-1 bis 0) und einmal von (0 bis2) oder hat das einen anderen Grund??
Falls [mm] y\varepsilonM2 [/mm] ist, dann muss y=1+x*|x| für ein x mit -1<x [mm] \le [/mm] 2 gelten

Es sei zunächs -1<x<0. Dann ist |x|=-x und es folgt wegen y=1+x*(-x)=1-x²
Ist 0 [mm] \le [/mm] x  [mm] \le [/mm] 2 dann ist |x|=x und [mm] y=1+x^{2} [/mm]



        
Bezug
Überabzählbare Zahlensysteme(2: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:23 Mi 17.11.2010
Autor: RWBK

Da ist mir ein Tippfehler unterlaufen
da sollte nämlich x2=-1 stehen und nicht x2=2

Sorry
MFG
RWBK

Bezug
        
Bezug
Überabzählbare Zahlensysteme(2: Antwort
Status: (Antwort) fertig Status 
Datum: 15:24 Mi 17.11.2010
Autor: fred97


> Bestimme Infimum und Supremum der Mengen
>  
> [mm]M1={x\varepsilon \IR; \bruch{x^{2}}{1+x^{2}}< \bruch{1}{2}}[/mm]
>  
> M2= [mm]{y\varepsilon \IR; y= 1+x*|x|, -1
>  
>
> Bei der ersten Aufgabe wollte ich erst mal wissen obdas so
> richtig ist??
>  
> [mm]x\varepsilon \IR; \bruch{x^{2}}{1+x^{2}}< \bruch{1}{2} \gdw[/mm]
> 2 [mm]x^{2}<1+x^{2} \gdw x^{2}[/mm] < 1


Stimmt soweit.


> x1=1
>  x2=2


Was soll das denn ??


>  
> -1<x<1


Ja

>  
> inf(M1)=-1
>  sup(M1)=1


Ja


>  
> Jetzt komme ich zu Aufgabe 2 da wird uns folgende Lösung
> präsentiert wozu ich eine frage hätte. Nämlich wird das
> |x| einmal zu x bzw -x weil wir unterschiedliche Bereiche
> ansehen einmal von (-1 bis 0) und einmal von (0 bis2) oder
> hat das einen anderen Grund??

Nein. Es ist |x|=x, wenn x [mm] \ge [/mm] 0 ist und |x|=-x, wenn x<0 ist


> Falls [mm]y\varepsilonM2[/mm] ist, dann muss y=1+x*|x| für ein x
> mit -1<x [mm]\le[/mm] 2 gelten


Das versteht kein Mensch !


>  
> Es sei zunächs -1<x<0. Dann ist |x|=-x und es folgt wegen
> y=1+x*(-x)=1-x²

O.K.

> Ist 0 [mm]\le[/mm] x  [mm]\le[/mm] 2 dann ist |x|=x und [mm]y=1+x^{2}[/mm]

Ja


FRED

>
>  


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]