matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenMaßtheorieÜberabzählbare Nullmengen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Maßtheorie" - Überabzählbare Nullmengen
Überabzählbare Nullmengen < Maßtheorie < Maß/Integrat-Theorie < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Maßtheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Überabzählbare Nullmengen: Ideen
Status: (Umfrage) Beendete Umfrage Status 
Datum: 16:27 Mi 22.09.2010
Autor: Harris

Hi!

Ich bin auf der Suche nach ein paar interessanten überabzählbaren Nullmengen. Ich kenne leider nur viel zu wenige davon und wollte deswegen fragen, welche ihr kennt bzw. ob ihr eine Seite wisst, die diese Frage bereits geklärt hat.

Cantor-Menge ist wohl die Standard-Nullmenge.
Die Liouville-Zahlen sind mir auch noch bekannt.
Die Menge aller Zahlen, in deren Dezimalbruchentwicklung eine z.B. "2" fehlt.

Würd mich freuen! :)

        
Bezug
Überabzählbare Nullmengen: Antwort
Status: (Antwort) fertig Status 
Datum: 18:51 Do 23.09.2010
Autor: Marc

Hallo Harris,

> Ich bin auf der Suche nach ein paar interessanten
> überabzählbaren Nullmengen. Ich kenne leider nur viel zu
> wenige davon und wollte deswegen fragen, welche ihr kennt
> bzw. ob ihr eine Seite wisst, die diese Frage bereits
> geklärt hat.
>  
> Cantor-Menge ist wohl die Standard-Nullmenge.
>  Die Liouville-Zahlen sind mir auch noch bekannt.
>  Die Menge aller Zahlen, in deren Dezimalbruchentwicklung
> eine z.B. "2" fehlt.

Das sind wohl alles Nullmengen bzgl. des Lebesgue-Maßes [mm] $\lambda^1$ [/mm] in [mm] $\IR$. [/mm]
Wolltest du dich nur darauf beziehen?

Bzgl. anderer Maße gibt es natürlich weitere überabzählbare Nullmengen, z.B. ist ganz [mm] $\IR$ [/mm] bzgl. des Nullmaßes eine Nullmenge ;-)
Und in [mm] $\IR^d$ [/mm] sind bzgl. des Lebesgue-Maßes [mm] $\lambda^d$ [/mm] alle Hyperebenen überabzählbare Nullmengen, so z.B. alle Geraden in [mm] $\IR^2,\IR^3,\ldots$ [/mm] oder alle Ebenen in [mm] $\IR^3,\IR^4,\ldots$. [/mm]

-Marc


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Maßtheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]