matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenTopologie und GeometrieÜber Ähnlichkeit Fläche Trapez
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Topologie und Geometrie" - Über Ähnlichkeit Fläche Trapez
Über Ähnlichkeit Fläche Trapez < Topologie+Geometrie < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Topologie und Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Über Ähnlichkeit Fläche Trapez: Korrektur
Status: (Frage) beantwortet Status 
Datum: 22:32 Mi 15.12.2010
Autor: svcds

Aufgabe
Sei ABCD ein Trapez mit CD [mm] \parallel [/mm] AB und AB=3 und CD = 2. Geraden BC und DA schneiden sich im Punkt O. Der Flächeninhalt des Dreiecks CDO ist gleich 2. Wie groß ist der Flächeninhalt des Trapezes ABCD?




Hi also ich habe die Aufgabe.

Ich weiß, dass ich das über Ähnlichkeit lösen muss, war aber letzte Woche durch den Schnee nicht in der Vorlesung.

Also ich krieg ja heraus, dass die Höhe des Dreiecks CDO = 2 = h ist durch Rechnen.

Aber was mach ich dann?!

Könnte ich das kleine Dreieck in Ähnlichkeitsbeziehung zum Dreieck ABO setzen?

Wegen den Stufenwinkeln ist ja [mm] \Delta [/mm] ABO [mm] \sim \Delta [/mm] CDO (nach www-Ähnlichkeitssatz).

Dann gilt AB : CD = 3/2 = 1,5 als Streckfaktor.

Dann hab ich Höhe [mm] \Delta [/mm] ABO = 1,5 * Höhe [mm] \Delta [/mm] CDO = 2*1,5 = 3.

Da Höhe [mm] \Delta [/mm] ABO = Höhe [mm] \Delta [/mm] CDO + Höhe Trapez ABCD ist, folgt dann, dass h Trapez 1 ist.

Daraus folgt dann A_Trapez = (a+c)/2 * h --> (2+3)/2 * 1 = 2,5 Flächeneinheiten.
Stimmt das?
GLG

        
Bezug
Über Ähnlichkeit Fläche Trapez: Antwort
Status: (Antwort) fertig Status 
Datum: 23:45 Mi 15.12.2010
Autor: Al-Chwarizmi


> Sei ABCD ein Trapez mit CD [mm]\parallel[/mm] AB und AB=3 und CD =
> 2. Geraden BC und DA schneiden sich im Punkt O. Der
> Flächeninhalt des Dreiecks CDO ist gleich 2. Wie groß ist
> der Flächeninhalt des Trapezes ABCD?
>  
>
>
> Hi also ich habe die Aufgabe.
>  
> Ich weiß, dass ich das über Ähnlichkeit lösen muss, war
> aber letzte Woche durch den Schnee nicht in der Vorlesung.
>  
> Also ich krieg ja heraus, dass die Höhe des Dreiecks CDO =
> 2 = h ist durch Rechnen.
>  
> Aber was mach ich dann?!
>  
> Könnte ich das kleine Dreieck in Ähnlichkeitsbeziehung
> zum Dreieck ABO setzen?
>  
> Wegen den Stufenwinkeln ist ja [mm]\Delta[/mm] ABO [mm]\sim \Delta[/mm] CDO
> (nach www-Ähnlichkeitssatz).
>  
> Dann gilt AB : CD = 3/2 = 1,5 als Streckfaktor.
>  
> Dann hab ich Höhe [mm]\Delta[/mm] ABO = 1,5 * Höhe [mm]\Delta[/mm] CDO =
> 2*1,5 = 3.
>  
> Da Höhe [mm]\Delta[/mm] ABO = Höhe [mm]\Delta[/mm] CDO + Höhe Trapez ABCD
> ist, folgt dann, dass h Trapez 1 ist.
>  
> Daraus folgt dann A_Trapez = (a+c)/2 * h --> (2+3)/2 * 1 =
> 2,5 Flächeneinheiten.
>  Stimmt das?
>  GLG


Guten Abend svcds,

das Ergebnis stimmt. Für die Trapezfläche würde ich allerdings
keine "Trapezformel" verwenden, sondern die Trapezfläche eben
einfach als Differenz der beiden benützten Dreiecksflächen
betrachten.

LG

Al-Chw.



Bezug
                
Bezug
Über Ähnlichkeit Fläche Trapez: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:55 Mi 15.12.2010
Autor: svcds

ich bin immer ein Freund mehrerer Lösungen das geht natürlich auch.

Danke!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Topologie und Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]