matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFourier-Transformationtrigonometrische fourierreihe
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Fourier-Transformation" - trigonometrische fourierreihe
trigonometrische fourierreihe < Fourier-Transformati < Transformationen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Fourier-Transformation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

trigonometrische fourierreihe: grenzwertbestimmung einer reih
Status: (Frage) beantwortet Status 
Datum: 14:27 So 24.05.2009
Autor: murock

Aufgabe
[mm] f(x)=\begin{cases} 1+x, & \mbox{für } x aus (-\pi,0] \\ 1-x, & \mbox{für } x aus (0,\pi] \end{cases} [/mm]
periodisch forgesetzt

die zahlenreihe:
[mm] \summe_{k=1}^{infty} (\bruch{(-1)^k * (2k+1)}{(4k+1)^2 * (4k+3)^2)} [/mm] = [mm] \bruch{1}{8} \summe_{k=1}^{infty} (-1)^k [/mm] * [mm] (\bruch{1}{(4k+1)^2} [/mm] - [mm] \bruch{1}{(4k+3)^2} [/mm]

1)Bestimmen sie die trigonometrische Fourierreihe von f un deren Punktweise Grenzfunktion
2)berechnen sie den grenzwert der angegebenen zahlenreihe durch einsetzen einer passenden stelle x in die erhaltene fourierreihe

fourier reihe hab ich bereits
ich komm da auf:
[mm] \bruch{2-\pi}{2} [/mm] + [mm] \summe_{n=1}^{infty} \bruch{2*(-1)^n-2}{\pi*n^2}*cos [/mm] nx

die fourierreihe konvergiert ja überall gleichmäßig wo die grenzfkt stetig ist
denk ich muss also die fourierreihe auf eine vernünftige form bringen in der gestalt der gesuchten reihe und dann einfach f bei x auswerten
is mir leider nicht gelungen

wäre für jeden tipp dankbar
lg

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
trigonometrische fourierreihe: Antwort
Status: (Antwort) fertig Status 
Datum: 20:58 So 24.05.2009
Autor: MathePower

Hallo murock,

[willkommenmr]


> [mm]f(x)=\begin{cases} 1+x, & \mbox{für } x aus (-\pi,0] \\ 1-x, & \mbox{für } x aus (0,\pi] \end{cases}[/mm]
>  
> periodisch forgesetzt
>  
> die zahlenreihe:
>  [mm]\summe_{k=1}^{infty} (\bruch{(-1)^k * (2k+1)}{(4k+1)^2 * (4k+3)^2)}[/mm]
> = [mm]\bruch{1}{8} \summe_{k=1}^{infty} (-1)^k[/mm] *
> [mm](\bruch{1}{(4k+1)^2}[/mm] - [mm]\bruch{1}{(4k+3)^2}[/mm]
>  
> 1)Bestimmen sie die trigonometrische Fourierreihe von f un
> deren Punktweise Grenzfunktion
>  2)berechnen sie den grenzwert der angegebenen zahlenreihe
> durch einsetzen einer passenden stelle x in die erhaltene
> fourierreihe
>  
> fourier reihe hab ich bereits
>  ich komm da auf:
>  [mm]\bruch{2-\pi}{2}[/mm] + [mm]\summe_{n=1}^{infty} \bruch{2*(-1)^n-2}{\pi*n^2}*cos[/mm]
> nx


Das hab ich jetzt nicht nachgerechnet.


>  
> die fourierreihe konvergiert ja überall gleichmäßig wo die
> grenzfkt stetig ist
>  denk ich muss also die fourierreihe auf eine vernünftige
> form bringen in der gestalt der gesuchten reihe und dann
> einfach f bei x auswerten
>  is mir leider nicht gelungen


Schau Dir die Fourierreihe etwas genauer an.

Diese hat nur ungerade Koeffizienten.


>  
> wäre für jeden tipp dankbar
>  lg
>
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.  


Gruß
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Fourier-Transformation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]