matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - Matrizentrigonalisierung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Lineare Algebra - Matrizen" - trigonalisierung
trigonalisierung < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

trigonalisierung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:50 Fr 11.04.2008
Autor: batjka

Aufgabe
[mm] A:=\pmat{ 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 1 & 0 } \in \IF_{2} [/mm]

zu zeigen: A ist nicht trigonalisierbar

Hallo, ich habe diese Aufgabe folgendermaßen gelöst:

Char. Polynom: [mm] x^3-2x^2+1 [/mm] => [mm] charPolA(x)=x^3+1, [/mm] da 2=0 in [mm] \IF_{2} [/mm]
Da charPolA(x) über dem Körper [mm] \IF_{2} [/mm] nicht in Linearfaktoren zerfällt, ist A nicht trigonal.bar

darf ich so argumentieren oder ist das falsch??


mfg

batjka


        
Bezug
trigonalisierung: Antwort
Status: (Antwort) fertig Status 
Datum: 14:02 Fr 11.04.2008
Autor: angela.h.b.


> darf ich so argumentieren oder ist das falsch??

Hallo,

es wäre richtig, wenn [mm] p(x)=x^3+1 [/mm] nicht zerfallen würde.

Aber es zerfällt doch, denn es ist [mm] x^3+1=(x-1)(x^2+x+1) [/mm]

Wenn Du Dir nun allerdings [mm] (x^2+x+1) [/mm] anschaust...

Gruß v. Angela



Bezug
                
Bezug
trigonalisierung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:16 Fr 11.04.2008
Autor: batjka

also wenn ich [mm] (x-1)(x^2+x+1)=0 [/mm] setze, ergibt sich nur eine Lösung:

[mm] x_1=1, [/mm] d.h es gibt nur einen EW. Um aber die Matrix trig.ieren zu können, brauche ich drei EW.

Bezug
                        
Bezug
trigonalisierung: Antwort
Status: (Antwort) fertig Status 
Datum: 14:33 Fr 11.04.2008
Autor: angela.h.b.


> also wenn ich [mm](x-1)(x^2+x+1)=0[/mm] setze, ergibt sich nur eine
> Lösung:
>  
> [mm]x_1=1,[/mm] d.h es gibt nur einen EW. Um aber die Matrix
> trig.ieren zu können, brauche ich drei EW.  

Hallo,

nein, letzteres ist so, wie es dasteht, nicht richtig. Eine Matrix mit Charakteristischen Polynom [mm] (x-1)^3 [/mm] wäre ja auch trigionalisierbar.

Bleib ruhig beim nicht zerfallenden Polynom. Da [mm] x^2+x+1 [/mm] nicht zerfällt (keine Nullstelle), zerfällt das charakteristische Polynom [mm] x^3+1 [/mm] nicht. Wie Du ja schon festgestellt hattest. Bloß konnte man es [mm] x^3+1 [/mm] noch nicht ohne weiteres ansehen.

Gruß v. Angela


Bezug
                                
Bezug
trigonalisierung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:54 Fr 11.04.2008
Autor: batjka

danke für deine hilfe

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]