matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenReelle Analysis mehrerer Veränderlichentotale Differenzierbarkeit
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Reelle Analysis mehrerer Veränderlichen" - totale Differenzierbarkeit
totale Differenzierbarkeit < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

totale Differenzierbarkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:58 Sa 26.09.2009
Autor: moerni

Aufgabe
Es sei [mm] f(x,y):=\begin{cases} \bruch{xy}{\wurzel{x^2+y^2}}, &\mbox{für} (x,y)\neq (0,0) \\ 0, &\mbox{für} (x,y)=(0,0)\end{cases} [/mm]
Ist f im Nullpunkt total differenzierbar?

Hallo.
Ich habe die Funktion für [mm] (x,y)\neq(0,0) [/mm] partiell nach x bzw y abgeleitet und für (x,y)=(0,0) mit dem Differenzenquotient argumentiert und erhalte, dass die partielle Ableitung nach x bzw y in (0,0) gleich 0 ist. Jetzt muss ich ja noch zeigen, dass die partiellen Ableitungen in 0 nicht stetig sind.
Kann ich das so machen:
[mm] \limes_{x\to0} \bruch{\partial f}{\partial x}(x,y)=1 [/mm]

[mm] \limes_{y\to0} \bruch{\partial f}{\partial x}(x,y)=0 [/mm]

[mm] \limes_{x\to0} \bruch{\partial f}{\partial y}(x,y)=1 [/mm]

[mm] \limes_{y\to0} \bruch{\partial f}{\partial y}(x,y)=0 [/mm]

??
grüße, moerni

        
Bezug
totale Differenzierbarkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 19:50 Sa 26.09.2009
Autor: Denny22


> Es sei [mm]f(x,y):=\begin{cases} \bruch{xy}{\wurzel{x^2+y^2}}, &\mbox{für} (x,y)\neq (0,0) \\ 0, &\mbox{für} (x,y)=(0,0)\end{cases}[/mm]
>  
> Ist f im Nullpunkt total differenzierbar?

>

>  Hallo.

Hallo,

>  Ich habe die Funktion für [mm](x,y)\neq(0,0)[/mm] partiell nach x
> bzw y abgeleitet und für (x,y)=(0,0) mit dem
> Differenzenquotient argumentiert und erhalte, dass die
> partielle Ableitung nach x bzw y in (0,0) gleich 0 ist.

Wie kommst Du darauf? Das widerspricht doch Deinen unten stehenden Berechnungen! Zunächst leitest Du die Funktion

     [mm] $f(x,y):=\begin{cases} \bruch{xy}{\wurzel{x^2+y^2}}, &\mbox{für} (x,y)\neq (0,0) \\ 0, &\mbox{für} (x,y)=(0,0)\end{cases}$ [/mm]

für [mm] $(x,y)\neq(0,0)$ [/mm] nach $x$ ab und erhälst:

     [mm] $\bruch{\partial f}{\partial x}(x,y)=\frac{y^3}{(x^2+y^2)^{\frac{3}{2}}}$ [/mm]

Nun gilt aber

     [mm] $\limes_{x\to0} \bruch{\partial f}{\partial x}(x,y)=1\neq 0=\limes_{y\to0} \bruch{\partial f}{\partial x}(x,y)$ [/mm]

Das heißt, wir nähern uns dem Nullpunkt (im Definitionsbereich) aus zwei unterschiedlichen Richtungen und erhalten zwei unterschiedliche Grenzwerte. Damit lässt sich die partielle Ableitung [mm] $\bruch{\partial f}{\partial x}$ [/mm] nicht in den Ursprung stetig fortsetzen. Bei der anderen partiellen Ableitung [mm] $\bruch{\partial f}{\partial y}$ [/mm] ist diese Beobachtung ähnlich.

> Jetzt muss ich ja noch zeigen, dass die partiellen
> Ableitungen in 0 nicht stetig sind.
>  Kann ich das so machen:
>  [mm]\limes_{x\to0} \bruch{\partial f}{\partial x}(x,y)=1[/mm]
>  
> [mm]\limes_{y\to0} \bruch{\partial f}{\partial x}(x,y)=0[/mm]
>  
> [mm]\limes_{x\to0} \bruch{\partial f}{\partial y}(x,y)=1[/mm]
>  
> [mm]\limes_{y\to0} \bruch{\partial f}{\partial y}(x,y)=0[/mm]

Hier hast Du Dich verrechnet! Es ist:

[mm] $\limes_{x\to0} \bruch{\partial f}{\partial x}(x,y)=1$ [/mm]
[mm] $\limes_{y\to0} \bruch{\partial f}{\partial x}(x,y)=0$ [/mm]
[mm] $\limes_{x\to0} \bruch{\partial f}{\partial y}(x,y)=0$ [/mm]
[mm] $\limes_{y\to0} \bruch{\partial f}{\partial y}(x,y)=1$ [/mm]

> ??
>  grüße, moerni

Lieben Gruß
Denny

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]