matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenReelle Analysis mehrerer Veränderlichentotal diffbare Funktionen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Reelle Analysis mehrerer Veränderlichen" - total diffbare Funktionen
total diffbare Funktionen < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

total diffbare Funktionen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:14 Mi 27.05.2009
Autor: myoukel

Aufgabe
Sei U [mm] \subseteq R^n [/mm] offen, F und G seien auf U definierte total differenzierbare Funktionen. Man beweise:
a) F+G ist total differenzierbar
b) F ist stetig

zu a): eine Funktion ist ja total differenzierbar, wenn in allen Punkten, alle partiellen ableitungen existieren. Kann ich dann wie folgt argumentieren???

F ist total diffbar auf U, also existieren in allen x [mm] \in [/mm] U alle partiellen ableitungen.
G ist auch total diffbar auf U, also existieren auch hier alle partiellen ableitungen.
[mm] \Rightarrow [/mm] F+G ist die Summe der beiden funktionen, also existieren auch hier alle partiellen ableitungen für alle x [mm] \in [/mm] U (Summenregel), also ist F+G auch total diffbar auf U

b) sind die partiellen ableitungen stetig auf U, dann ist die funktion total diffbar!

[mm] \Righarrow [/mm] im umkehrschluss muss F stetig sein, da F total diffbar ist (richtig?)

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
total diffbare Funktionen: Antwort
Status: (Antwort) fertig Status 
Datum: 17:33 Mi 27.05.2009
Autor: fred97


> Sei U [mm]\subseteq R^n[/mm] offen, F und G seien auf U definierte
> total differenzierbare Funktionen. Man beweise:
>  a) F+G ist total differenzierbar
>  b) F ist stetig
>  zu a): eine Funktion ist ja total differenzierbar, wenn in
> allen Punkten, alle partiellen ableitungen existieren.

Das ist falsch !

FRED


> Kann
> ich dann wie folgt argumentieren???
>  
> F ist total diffbar auf U, also existieren in allen x [mm]\in[/mm] U
> alle partiellen ableitungen.
>  G ist auch total diffbar auf U, also existieren auch hier
> alle partiellen ableitungen.
>  [mm]\Rightarrow[/mm] F+G ist die Summe der beiden funktionen, also
> existieren auch hier alle partiellen ableitungen für alle x
> [mm]\in[/mm] U (Summenregel), also ist F+G auch total diffbar auf U
>  
> b) sind die partiellen ableitungen stetig auf U, dann ist
> die funktion total diffbar!
>  
> [mm]\Righarrow[/mm] im umkehrschluss muss F stetig sein, da F total
> diffbar ist (richtig?)
>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.


Bezug
                
Bezug
total diffbare Funktionen: hinweis?
Status: (Frage) beantwortet Status 
Datum: 17:55 Mi 27.05.2009
Autor: myoukel

hast du denn einen hinweis wie ich das sonst angehen könnte? und aufgabenteil b auch falsch?

Bezug
                        
Bezug
total diffbare Funktionen: Antwort
Status: (Antwort) fertig Status 
Datum: 07:59 Do 28.05.2009
Autor: fred97

Ist $ [mm] U\subset\IR^n [/mm] $ offen, so heißt $ [mm] F:U\to\IR^m [/mm] $ in $ [mm] x_0\in [/mm] U $ (total) differenzierbar, wenn es eine lineare Abbildung $ [mm] A:\IR^n\to\IR^m [/mm] $ gibt sodass $ [mm] F(x_0+h)=F(x)+Ah+RF(x_0,h) [/mm] $ mit $ [mm] RF(x_0,h)\in [/mm] o(|h|) $ für $ [mm] h\to [/mm] 0 $, was bedeutet dass $ [mm] \lim_{h\to 0}\frac{RF(x_0,h)}{\|h\|}=0 [/mm] $ ist

Entspr.:

$ [mm] G:U\to\IR^m [/mm] $ in $ [mm] x_0\in [/mm] U $ (total) differenzierbar, wenn es eine lineare Abbildung $ [mm] B:\IR^n\to\IR^m [/mm] $ gibt sodass $ [mm] G(x_0+h)=G(x)+Ah+RG(x_0,h) [/mm] $ mit $ [mm] RG(x_0,h)\in [/mm] o(|h|) $ für $ [mm] h\to [/mm] 0 $, was bedeutet dass $ [mm] \lim_{h\to 0}\frac{RG(x_0,h)}{\|h\|}=0 [/mm] $ ist


Was wird nun wohl für F+G in [mm] x_0 [/mm] gelten ?

FRED

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]