matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFunktionalanalysistopologie norm
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Funktionalanalysis" - topologie norm
topologie norm < Funktionalanalysis < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionalanalysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

topologie norm: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:14 Di 09.05.2006
Autor: AriR

Aufgabe
z.z.: Aquivalente Normen definieren die gleiche Topologie.
Zwei Normen [mm] ||·||_1 [/mm] und [mm] ||·||_2 [/mm] auf einem Vektorraum V heißen äquivalent, falls es Konstanten [mm] c,C\in R_{>0} [/mm] gibt mit:

c * [mm] ||x||_1 \le [/mm] ||x|| [mm] \le [/mm] C* [mm] ||x||_2 \forall x\in [/mm] V

(frage zuvor nicht gestellt)

Hey leute, irgendwie komme ich gerade nicht mal darauf, wie eine norm eine topologie definiert.

also demnach müsste der [mm] (V,T_1) [/mm] ein topolgischer raum sein wobei [mm] T_1=\{||x||_1 | x\in V\} [/mm] oder?

und [mm] (V,T_2) [/mm] ,wobei [mm] T_2=\{||x||_2 | x\in V\} [/mm]

und jetzt muss man zeigen [mm] T_1=T_2, [/mm] also

        [mm] \{||x||_1 | x\in V\} [/mm]    =(zu zeigen)    [mm] \{||x||_2 | x\in V\} [/mm]

Bew:

Sei [mm] x\in [/mm] V
[mm] \Rightarrow ||x||_1\in T_1 [/mm]

z.z. [mm] ||x||_1 \in T_2 [/mm]

[mm] c*||x||_1\le ||x||_2 \gdw ||x||_1\le ||\bruch{x}{c}||_2 [/mm]

[mm] ||x||_2\le C*||x||_1 \gdw ||\bruch{x}{C}||_2\le ||x||_1 [/mm]

1.Fall: [mm] c\le [/mm] C

[mm] ||x||_1\le ||\bruch{x}{c}||_2 \ge ||\bruch{x}{C}||_2\le ||x||_1 [/mm]
[mm] \Rightarrow ||x||_1 =||\bruch{x}{c}||_2 [/mm] = [mm] ||\bruch{x}{C}||_2 [/mm]
[mm] \Rightarrow ||x||_1 \in T_2 [/mm] da [mm] \bruch{x}{c} [/mm] aufgrund der abgeschlossenheit von V wieder in V ist und [mm] ||\bruch{x}{c}||_2 \in T_2 [/mm]

und das analog für den Fall 2: [mm] c\ge [/mm] C

ist das so richtig?

danke vielmals im voraus.. gruß Ari



        
Bezug
topologie norm: Antwort
Status: (Antwort) fertig Status 
Datum: 13:42 Di 09.05.2006
Autor: Hanno

Hallo Ari!

> also demnach müsste der $ [mm] (V,T_1) [/mm] $ ein topolgischer raum sein wobei $ [mm] T_1=\{||x||_1 | x\in V\} [/mm] $ oder?

> und $ [mm] (V,T_2) [/mm] $ ,wobei $ [mm] T_2=\{||x||_2 | x\in V\} [/mm] $

Nein, das ist nicht richtig. Schon deshalb nicht, da die Elemente von [mm] $T_1,T_2$ [/mm] i.A. keine Teilmengen von $V$, sondern reelle Zahlen sind.

Ist auf dem Vektorraum $V$ eine Norm [mm] $\|\cdot\|$ [/mm] definiert, dann wird durch sie eine Topologie auf $V$ induziert. In dieser Topologie sind die offenen Mengen genau die Vereinigungen von offenen Kugeln [mm] $B_{\epsilon}(x)=\{y\in V | \|x-y\|<\epsilon\}$ [/mm] (die offenen Kugel bilden eine Basis der Topologie).

So induziert die euklidische Norm [mm] $\|\cdot\|_2$ [/mm] mit [mm] $\|(x,y)\|_2:=\sqrt{x^2+y^2}$ [/mm] die natürliche Topologie auf [mm] $\IR^2$. [/mm]

Um zu zeigen, dass die von zwei äquivalenten Normen [mm] $\|\cdot\|_1, \|\cdot\|_2$ [/mm] induzierten Topologien [mm] ${\cal O}_1, {\cal O}_2$ [/mm] gleich sind, musst du nun nachweisen (da war dein Ansatz schon richtig), dass jede offene Menge in [mm] ${\cal O}_1$ [/mm] auch offen in [mm] ${\cal O}_2$ [/mm] ist und umgekehrt.

Dabei ist es hilfreich zu sehen, dass für jede offene Menge [mm] $O\in {\cal O}_1$ [/mm] und jedes [mm] $x\in [/mm] O$ eine [mm] $\|\cdot\|_1$-Kugel [/mm] um $x$ gibt, die noch komplett in $x$ liegt (warum?). Zum Beweis von [mm] ${\cal O}_1\subset {\cal O}_2$ [/mm] ist es daher hinreichend zu zeigen, dass jede offene [mm] $\|\cdot\|_1$-Kugel [/mm] mit Mittelpunkt $x$ eine [mm] $\|\cdot\|_2$-Kugel [/mm] mit Mittelpunkt $x$ gibt, die in der ersten Kugel enthalten ist.

Seien also [mm] $x\in [/mm] V, [mm] \epsilon>0$ [/mm] beliebig gewählt. Du musst nun ein [mm] $\delta$ [/mm] so finden, dass [mm] $\{y\in V|\|x-y\|_2<\delta\}\subset\{y\in V|\|x-y\|_1<\epsilon\}$ [/mm] ist; mit anderen Worten ein [mm] $\delta$, [/mm] für das mit [mm] $y\in [/mm] V$ und [mm] $\|x-y\|_2<\delta$ [/mm] auch [mm] $\|x-y\|_1<\epsilon$ [/mm] folgt. Schaffst du das unter Berücksichtigung der Voraussetzung?


Liebe Grüße,
Hanno

Bezug
                
Bezug
topologie norm: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:03 Di 09.05.2006
Autor: AriR

vielen dank schonmal.. ich versuch die aufgabe bis heute abend oder morge zu lösen und geben dir dann wieder bescheid ok?

vielen dank nochmal :)

Gruß Ari

Bezug
                
Bezug
topologie norm: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:40 Di 09.05.2006
Autor: AriR

ich hab mal versucht zu zeigen, dass [mm] T_1\subset T_2: [/mm]

Sei [mm] T\in T_1 [/mm]

[mm] \Rightarrow [/mm] (Def.Top.) T ist offen [mm] \Rightarrow [/mm] Sei [mm] x\in, \exists \varepsilon>0: \{ v\in V | ||x-v||_1<\varepsilon\} \subset [/mm] T
[mm] \Rightarrow [/mm] (laut der ungleichung der [mm] \gdw [/mm] normen) [mm] \{v\in V | c * ||x-v||_2 \le ||x-v||_1<\varepsilon\}\subset [/mm] T
[mm] \Rightarrow \{v\in V | c * ||x-v||_2<\varepsilon\}\subset T_2 [/mm]
[mm] \Rightarrow [/mm] (da c>0) [mm] \{v\in V | ||x-v||_2<\varepsilon\}\subset T_2 [/mm]

jetzt habe ich aber sozusagen nur gezeigt, dass wenn es eine offene Kugel in [mm] T_1 [/mm] gibt es eine immer eine kleine Kugel aus [mm] T_2 [/mm] gibt, die in [mm] T_1 [/mm] liegt, aber das ist sicher nicht ausreichen oder?

Gruß Ari

Bezug
                        
Bezug
topologie norm: Bedeutung der Variablen?
Status: (Antwort) fertig Status 
Datum: 12:13 Do 11.05.2006
Autor: mathemaduenn

Hallo Ari,
Ich ergänze mal das fehlende in Deiner Definition

Sei [mm]T\in T_1 \gdw \mbox{T offen in} T_1 \gdw \forall x\in T, \exists \varepsilon_1>0: \{ v\in V | ||x-v||_1<\varepsilon_1\} \subset T[/mm]
Am Ende Deiner Beweiskette sollte also stehen:
[mm]\forall x\in T, \exists \varepsilon_2>0: \{ v\in V | ||x-v||_2<\varepsilon_2\} \subset T \gdw T \in T_2[/mm]
Das kann man irgendwie noch nicht erkennen. Wenn z.B. die Bedeutung von Variablen wechselt ist das immer schlecht.
Du kannst Dich aber auch darauf beschränen zu zeigen das die 2 Topologieen die gleiche Basis haben.
viele Grüße
mathemaduenn

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionalanalysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]