matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGruppe, Ring, Körperteilbarkeitslehre
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Gruppe, Ring, Körper" - teilbarkeitslehre
teilbarkeitslehre < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

teilbarkeitslehre: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:28 So 28.10.2012
Autor: mathe-tiger

Aufgabe
Seien m, n [mm] \in \IZ_{>0}. [/mm] zu zeigen:
Ist r der Rest bei Division von m durch n, dann ist [mm] 2^{r}-1 [/mm] der Rest bei Division von [mm] 2^{m}-1 [/mm] durch [mm] 2^{n}-1. [/mm]

Hallo,
ich habe Schwierigkeiten mit dieser Aufgabe. Ich würde sie mit vollständiger Induktion lösen, weiß allerdings nicht, wie ich diese ansetzen soll. So weiß ich gerade nicht, was mein Induktionsanfang ist.

Ich hoffe, ihr könnt mir einen Tipp geben, damit ich die Aufgabe lösen kann.

Viele Grüße
mathe-tiger

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


        
Bezug
teilbarkeitslehre: Antwort
Status: (Antwort) fertig Status 
Datum: 18:36 So 28.10.2012
Autor: abakus


> Seien m, n [mm]\in \IZ_{>0}.[/mm] zu zeigen:
> Ist r der Rest bei Division von m durch n, dann ist [mm]2^{r}-1[/mm]
> der Rest bei Division von [mm]2^{m}-1[/mm] durch [mm]2^{n}-1.[/mm]
>  Hallo,
> ich habe Schwierigkeiten mit dieser Aufgabe. Ich würde sie
> mit vollständiger Induktion lösen, weiß allerdings
> nicht, wie ich diese ansetzen soll. So weiß ich gerade
> nicht, was mein Induktionsanfang ist.
>
> Ich hoffe, ihr könnt mir einen Tipp geben, damit ich die
> Aufgabe lösen kann.
>
> Viele Grüße
> mathe-tiger

Hallo,
ich sehe hier keine notwendigkeit für einen Induktionsbeweis.
Versuche doch einmal, [mm] $2^{m}-1$ [/mm] (was nach Summenformel der geometrischen Reihe gerade [mm] $2^{m-1}+2^{m-2}+...+2^3+2^2+2^1+2^0$ [/mm] ist)
durch [mm] $2^{n}-1$ [/mm] (was eine entsprechende Summendarstellung besitzt) zu teilen. Dabei bekommst du einen ganzen Anteil und einen Rest.
Gruß Abakus

>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>  


Bezug
                
Bezug
teilbarkeitslehre: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:58 So 28.10.2012
Autor: mathe-tiger

danke. das heißt ja dann, wenn ich [mm] 2^{m}-1 [/mm] durch [mm] 2^{n}-1 [/mm] teile, bleibt genau [mm] 2^{r}-1 [/mm] übrig und damit habe ich dann alles gezeigt.

Bezug
                        
Bezug
teilbarkeitslehre: Antwort
Status: (Antwort) fertig Status 
Datum: 19:18 So 28.10.2012
Autor: abakus


> danke. das heißt ja dann, wenn ich [mm]2^{m}-1[/mm] durch [mm]2^{n}-1[/mm]
> teile, bleibt genau [mm]2^{r}-1[/mm] übrig und damit habe ich dann
> alles gezeigt.

Hallo,
SOOO einfach nun auch wieder nicht.
Es bleibt als Restbruch in Zähler eine Summe von einigen wenigen Zweierpotenzen übrig, und im Nenner sind es einige (wie viele?) Zweierpotenzen mehr. Irgendeine Rolle muss ja der in meinem Ansatz bisher nicht betrachtete Wert r spielen. Hier kommt die gegebene Voraussetzung ins Spiel.
Gruß Abakus

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]