matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenStochastikt-test bei mittelwertvergleich?
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Stochastik" - t-test bei mittelwertvergleich?
t-test bei mittelwertvergleich? < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

t-test bei mittelwertvergleich?: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:13 Fr 07.05.2004
Autor: claasemann

hoffe mir kann jemand helfen,
sitze an einer hausarbeit und untersuche einstellungen von jugendlichen zu bekleidungsherstellern
dazu gab es ratingskalen von 1-5 um festzustellen wie gut oder schlecht die marke abschneidet:
Bsp.: bietet die marke x qualität  ja (1) 2 3 4 (5) nein
ich möchte nun mittelwertvergleiche mit
1. dem alter (nur unterteilt in jung und alt)
2. dem geschlecht
und jetzt die über gedeih und verderb entscheidende frage: welche tests muss ich zur signifikanzüberprüfung durchführen?

danke für jeden hilfreichen hinweis

        
Bezug
t-test bei mittelwertvergleich?: Antwort
Status: (Antwort) fertig Status 
Datum: 10:31 Sa 08.05.2004
Autor: Julius

Hallo Claas,

erstens: Deine Frage gehört in den Uni-Bereich. Ich werde sie nicht verschieben, aber poste derartige Fragen bitte demnächst dahin, Danke. :-)

Du musst den Zweistichproben-t-Test anwenden.

Er lautet wie folgt (hierbei sei [mm]\alpha[/mm] das zu Grunde gelegte Signifikanzniveau):

1. Annahme:

Die Zufallsvariablen [mm]X_1,\ldots,X_m[/mm], [mm]Y_1,\ldots,Y_n[/mm] seien unabhängig, [mm]X_1,\ldots,X_m[/mm] identisch [mm]N(\mu_1,\sigma^2)[/mm]-verteilt, [mm]Y_1,\ldots,Y_n[/mm] identisch [mm]N(\mu_2,\sigma^2)[/mm]-verteilt. [mm]\mu_1[/mm], [mm]\mu_2[/mm] und [mm]\sigma^2[/mm] seien unbekannt.


2. Nullhypothese:

[mm]H_0: \, \mu_1 = \mu_2[/mm].


3. Testgröße:

[mm]T(X_1,\ldots,X_m,Y_1,\ldots,Y_n) = \sqrt{\frac{m\cdot n \cdot (m+n-2)}{m+n}} \cdot \frac{\bar{Y}_{(n)} - \bar{X}_{(m)}}{\sqrt{(m-1) S^2_{(m)} + (n-1)\tilde{S}^2_{(n)}}}[/mm]

mit

[mm]S^2_{(m)} = \frac{1}{m-1} \cdot \sum_{i=1}^m (X_i - \bar{X}_{(m)})^2[/mm]

und

[mm]\tilde{S}^2_{(n)} = \frac{1}{n-1} \cdot \sum_{i=1}^n (Y_i - \bar{Y}_{(n)})^2[/mm]

Falls [mm]H_0[/mm] zutrifft, ist die Testgröße [mm]t_{m+n-2}[/mm]-verteilt.


4. Kritischer Bereich:

[mm]K=\{(x_1,\ldots,x_m,y_1,\ldots,y_n) \in \IR^{m+n} \, : \, |T(x_1,\ldots,x_m,y_1,\ldots,y_n)| > t_{m+n-2;1-\frac{\alpha}{2}}\}[/mm].


5. Entscheidungsregel:

Wird [mm](x_1,\ldots,x_m,y_1,\ldots,y_n)[/mm] beobachtet, so dass

[mm]|T(x_1,\ldots,x_m,y_1,\ldots,y_n)|>t_{m+n-2;1-\frac{\alpha}{2}}[/mm]

gilt, so wird [mm]H_0[/mm] verworfen; sonst wird gegen [mm]H_0[/mm] nichts eingewendet.


Ich hoffe ich konnte dir helfen. :-) Melde dich einfach wieder bei Fragen.

Liebe Grüße
Stefan

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]