matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAnalysis-Sonstigessymmetrie
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Analysis-Sonstiges" - symmetrie
symmetrie < Sonstiges < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

symmetrie: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:55 Fr 13.04.2007
Autor: laura.e

Aufgabe
[mm] f(x)=(x^{2}+x+1):(x+1) [/mm]

Geben sie die Asymptoten für f an.
begründen sie, dass f symmetrisch zu einem Punkt S ist.
Die Kurve von f schließt mit ihrer schiefen Asymptote und der y-achse eine unbeschränkte Fläche ein. Untersuchen sie, ob der Inhalt der Fläche endlich ist.

Asymptoten: x=-1 und y=x

Symmetrie:

Bedingung für Punktsymmetrie ist f(-x)=-f(x)
der Wahrscheinliche Punkt für Symmetrie liegt beim
Schnittpunkt der beiden Asymptoten, also S(-1/-1)

also dachte ich mir: f(-x-1)-1=-(f(x-1)-1)

müsste das nicht so funktionieren?
zum flächeninhalt hab ich keine ahnung, ausser dass man diesen normalerweise mit integral berechnet.
was ist eine endlicher flächeninhalt?

danke für jede hilfe schonmal im vorraus

        
Bezug
symmetrie: Antwort
Status: (Antwort) fertig Status 
Datum: 13:38 Fr 13.04.2007
Autor: Zwerglein

Hi, laura,

> [mm]f(x)=(x^{2}+x+1):(x+1)[/mm]
>  
> Geben sie die Asymptoten für f an.
>  begründen sie, dass f symmetrisch zu einem Punkt S ist.
>  Die Kurve von f schließt mit ihrer schiefen Asymptote und
> der y-achse eine unbeschränkte Fläche ein. Untersuchen sie,
> ob der Inhalt der Fläche endlich ist.
>  Asymptoten: x=-1 und y=x
>  
> Symmetrie:
>  
> Bedingung für Punktsymmetrie ist f(-x)=-f(x)
>  der Wahrscheinliche Punkt für Symmetrie liegt beim
>  Schnittpunkt der beiden Asymptoten, also S(-1/-1)

[ok]
  

> also dachte ich mir: f(-x-1)-1=-(f(x-1)-1)

Naja, mal ausführlich:

Du verschiebst den Graphen von f um 1 nach rechts und um 1 nach oben.
Damit erhältst Du: g(x) = f(x-1)+1
Und für g müsste nun gelten: g(-x) = -g(x)
Bin mir nicht sicher, ob Du mit Deiner Schreibweise dasselbe rauskriegst.
Vielleicht stimmt's ja - aber für mich ist das ein bissl "unübersichtlich".
  

> müsste das nicht so funktionieren?
>  zum flächeninhalt hab ich keine ahnung, ausser dass man
> diesen normalerweise mit integral berechnet.
>  was ist eine endlicher flächeninhalt?

Naja: Wenn halt "was Endliches" rauskommt - und nicht [mm] \infty. [/mm]

Bei Dir ist es doch so, dass Du die Obergrenzze zunächst variabel wählst, also z.B.:

A = [mm] \integral_{0}^{a}{(f(x) - x) dx} [/mm]

=  [mm] \integral_{0}^{a}{\bruch{1}{x+1} dx} [/mm]

= [mm] [ln(x+1)]_{0}^{a} [/mm] = ln(a+1)

Und nun lass' mal a gegen [mm] \infty [/mm] gehen - dann siehst Du schon, ob "was Endliches" rauskommt oder nicht!

mfG!
Zwerglein

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]