sylow gruppen < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) überfällig | Datum: | 21:52 Sa 16.05.2009 | Autor: | mini111 |
Aufgabe | Sei G eine Gruppe der Ordnung n.
a)Zeigen sie für n=40 bzw. 42,dass G eine normale p-Sylow-Gruppe für ,p=5 bzw. 7 hat,indem sie mit Hilfe der Sylow-Sätze beweisen,dass G nur eine p-Sylow-Gruppe für diese p hat.
b)Beweisen sie,dass jede Gruppe mit 45 Elementen abelsch ist.
c)Beweisen sie,dass in einer Gruppe mit 4*p Elementen,p>3,die p-sylow-gruppe normalteiler ist.
d)Zeigen sie für n=12,30,56 dass eine der p-Sylow-Gruppen normal ist,indem Sie dass Gegenteil annehmen und die verbleibenden Gruppenelemente abzählen.
e)Beweisen sie für n=36,dass G nicht einfach ist.Verfahren sie ähnlich mit n=24,48.
f)beweisen sie ,dass G für n<60,n nicht prim,nicht einfach ist. |
hallo,
ich hoffe einer von euch kann mir vielleicht ein wenig weiter helfen.
a)für |G|=40=5*8=2*20
5-sylowgruppe
3.satz von sylow:s|m und s [mm] \equiv [/mm] 1 (mod 5),einziges s=1 und deshalb ist diese 5-sylowgruppe ein normalteiler.aber reicht das als beweis?
dann gibt es ja noch die 2-sylow gruppe aber nach der wird ja nichts gefragt,also kann man die beiseite lassen ?
zu |G|=42=7*6=3*14,gleiche begründung.
b)ah hier zu habe ich bisher noch keinen passenden satz gefunden.ich weiß nur,dass jede gruppe der ordnung prim,zyklisch ist und diese abelsch sind.aber da |G|=45 leider nicht prim ist,bringt mich das nicht weiter.:(
c)+d)ein kleiner tipp wär nicht schlecht...
wär schon super,wenn mir jemand erstmal bis hier weiterhelfen könnte.
gruß und danke
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 22:23 Mo 18.05.2009 | Autor: | matux |
$MATUXTEXT(ueberfaellige_frage)
|
|
|
|