matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenSonstigessurjektiv
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Sonstiges" - surjektiv
surjektiv < Sonstiges < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

surjektiv: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:41 Fr 09.11.2007
Autor: lenz

Aufgabe
seien f,g zwei [mm] abbildungen,f:L\to [/mm] M [mm] ,g:M\to [/mm] N
ist [mm] g\circ [/mm] f surjektiv so ist f surjektiv

hallo
meine frage wäre:muß g nicht ganz M abbilden,also f surjektiv voraussetzung
für [mm] g\circ [/mm] f ?

gruß lenz

ich habe diese frage in keinem forum auf einer seite gestellt

        
Bezug
surjektiv: Antwort (fehlerhaft)
Status: (Antwort) fehlerhaft Status 
Datum: 23:03 Fr 09.11.2007
Autor: marcsn

Nein das stimmt so nicht. Die Abbildung g ist surjektiv wenn jedes Bild von g mindestens ein Urbild hat.

Hast du das vielleicht mit injektiv verwechselt ? Eine Abbildung ist injektiv wenn jeder Funktionswert ein anderes Bild hat.

Bezug
                
Bezug
surjektiv: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 23:16 Fr 09.11.2007
Autor: lenz

schon mal danke
habs aber nicht so ganz verstanden
also normalerweise bildet eine funktion von M nach N ja ganz M ab.
wenn ganz N getroffen wird ist sie surjektiv,wenn [mm] f'(x)=f(y)\Rightarrow [/mm] x=y
ist sie injektiv soweit ich weiß.
bei [mm] g\circ [/mm] f bildet g ja nur elemente ab die von f abgebildet wurden.
meine frage ist eigentlich kann es im definitionsbereich von g elemente geben
die von f nicht getroffen werden also garnicht abgebildet werden?

Bezug
                
Bezug
surjektiv: Korrekturmitteilung
Status: (Korrektur) fundamentaler Fehler Status 
Datum: 12:49 Sa 10.11.2007
Autor: angela.h.b.


> Die Abbildung g ist surjektiv
> wenn jedes Bild von g mindestens ein Urbild hat.

Hallo,

das ist nicht richtig.

Ein jedes Bild von g hat mindestens ein Urbild. Sonst wär's ja kein Bild...

Was Du meinst, ist sicher folgendes: ein jedes Element des Wertebereiches hat ein Urbild in der Definitionsmenge.
Es wird also auf jedes Element des Wertebereiches ein Element des Definitionsbereiches abgebildet.

Gruß v. Angela

Bezug
        
Bezug
surjektiv: Antwort
Status: (Antwort) fertig Status 
Datum: 12:57 Sa 10.11.2007
Autor: angela.h.b.


> seien f,g zwei [mm]abbildungen,f:L\to[/mm] M [mm],g:M\to[/mm] N
> ist [mm]g\circ[/mm] f surjektiv so ist f surjektiv
>  hallo
>  meine frage wäre:muß g nicht ganz M abbilden,also f
> surjektiv voraussetzung
>  für [mm]g\circ[/mm] f ?

Hallo,

Du sollst zeigen:

[mm] g\circ [/mm] f  surjektiv  ==> f ist surjektiv.

Das bedeutet: wenn [mm] g\circ [/mm] f surjektiv ist, kann es gar nicht anders sein, als daß f surjektiv ist.

Du hast nun folgendes richtig erkannt:

schon wenn man [mm] g\circ [/mm]  f  definieren möchte - egal ob surjektiv, injektiv, nichts von beiden oder alles - , geht das nur, wenn f surjektiv ist. Das ist völlig richtig.

Die zu zeigende Behauptung stimmt also sogar, wenn man auf die Surjektivität v. [mm] g\circ [/mm] f  verzichtet.

Gruß v. Angela

Bezug
                
Bezug
surjektiv: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:41 Sa 10.11.2007
Autor: lenz

hab dank
gruß lenz

Bezug
                
Bezug
surjektiv: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:27 Mo 12.11.2007
Autor: lenz

hallo
hab in der vorlesung(oder ü-gruppe)gehört es sei doch möglich
daß [mm] f\circ [/mm] g mit f nicht surjektiv(falls es jemanden interressiert)
gruß lenz

Bezug
                        
Bezug
surjektiv: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:49 Mo 12.11.2007
Autor: angela.h.b.


> hallo
> hab in der vorlesung(oder ü-gruppe)gehört es sei doch
> möglich
>  daß [mm]f\circ[/mm] g mit f nicht surjektiv(falls es jemanden
> interressiert)
>  gruß lenz

Hallo,

aber Deine Aufgabe hier handelte von [mm] g\circ [/mm] f.

Gruß v. Angela

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]