matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegralrechnungsummenformel
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Integralrechnung" - summenformel
summenformel < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

summenformel: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:50 Mi 06.09.2006
Autor: Bit2_Gosu

Hallo !!!

Um den Flächeninhalt unter der allgemeinen Funktion f(x)= [mm] x^b [/mm] auszurechnen,

brauche ich die Summenformel  [mm] \summe_{i=1}^{n} i^b [/mm] .

Ich hab schon viel rumgefragt, aber keiner wusste was davon.

Wäre echt toll, wenn ihr sie mir sagen könntet !!!

        
Bezug
summenformel: Antwort
Status: (Antwort) fertig Status 
Datum: 19:10 Mi 06.09.2006
Autor: Event_Horizon

ich denke, du möchtest eine Formel für die Unter- und Obersummen, korrekt?

Folgendes:

Du zeichnest Rechtecke Seite an Seite unter deine Funktion, sodaß jedes auf der x-AChse steht, und seine linke obere Ecke die Funktion berührt.

Du willst die Fläche erstmal zwischen den x-Werten 0 und a berechnen

Die Anzahl deiner Rechtecke ist n





Nun, die Breite eines Rechtecks ist nun [mm] $b=\bruch{a}{n}$ [/mm]

Die höhe eines Rechtecks ist der Funktionswert oben links am Rechteck

Also f(0) für das erste Rechteck, f(s) für das zweite, f(2s) für das dritte und so weiter.

Um die Fläche des jeweiligen Rechtecks zu berechnen, mußt du Breite und Höhe multiplizieren:

$A= s*f(0)+s*f(s)+s*f(2s)+...$


[mm] $A=\summe_{i=0}^{n-1} [/mm] s*f(i*b)$

Beachte: das letzte rechteck hat als Funktionswert nicht $f(n*b)$, sondern$f((n-1)*b)$, weil linke obere Ecke!

und da b immer gleich ist:


[mm] $A=b*\summe_{i=0}^{n-1} [/mm] f(i*b)$


Anschließend setzt man die Funktion ein, und versucht, für die Summe einen Term zu finden, sodaß das Summenzeichen weg kann. Danach verrechnet man den neuen Ausdruck mit dem Faktor b. der da noch steht, und setzt

[mm] $b=\bruch{a}{n}$ [/mm]

ein.

Jetzt macht man eine Grenzwertbetrachtung n -> oo, also unendlich viele Rechtecke. Gibt es den Grenzwert, ist das deine gesuchte Fläche.



Das Problem ist allerdings, die Ersatzformel zu finden, für lineare und quadratische Funktionen ist das kein Problem, danach wirds kritisch.


Bezug
                
Bezug
summenformel: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:23 Mi 06.09.2006
Autor: Bit2_Gosu

ich weiß schon wie man normalerweise den Flächeninhalt unter zb [mm] x^2 [/mm] ausrechnet.

zu den ersatzformeln. kein problem ich könnte theoretisch eine für jede einzelne potenz nach dem pascalschen dreieck erstellen, hur allgemein weiß ich des net ;)

Deshalb wäre es echt cool, wenn mir jemand helfen könnte !!!

Bezug
                        
Bezug
summenformel: Antwort
Status: (Antwort) fertig Status 
Datum: 23:37 Mi 06.09.2006
Autor: Zwerglein

Hi, Bit2_Gosu,

> ich weiß schon wie man normalerweise den Flächeninhalt
> unter zb [mm]x^2[/mm] ausrechnet.
>  
> zu den ersatzformeln. kein problem ich könnte theoretisch
> eine für jede einzelne potenz nach dem pascalschen dreieck
> erstellen, hur allgemein weiß ich des net ;)
>  
> Deshalb wäre es echt cool, wenn mir jemand helfen könnte
> !!!

Kann mir nicht vorstellen, dass es sowas gibt!
Hab' hier
[]http://www.arndt-bruenner.de/mathe/Allgemein/summenformel2.htm
ein "paar" Formeln gefunden, aber die werden gegen Ende hin (mit steigendem Exponenten) so unhandlich, dass ich es kaum für möglich halte, dass es sozusagen eine "universelle" Formel gibt!

mfG!
Zwerglein

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]