strikt konvex L^1 < Sonstiges < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) überfällig | Datum: | 10:00 Do 11.02.2021 | Autor: | Noya |
Aufgabe | Ist F(u)= [mm] \parallel [/mm] k [mm] \ast [/mm] u -f [mm] \parallel_{L^1(\Omega)} [/mm] strikt konvex für k(x)=1 für alle x [mm] \in \omega [/mm] mit F: [mm] L^1(\Omega) \to \overline{\mathbb{R}} [/mm] |
Hallo ihr Lieben,
ich würde gerne zeigen, dass F strikt konvex ist für k =1, d.h zz. ist
[mm] F(\lambda u_1 [/mm] + [mm] (1-\lambda) u_2) [/mm] < [mm] \lambda F(u_1) [/mm] + [mm] (1-\lambda)F(u_2) [/mm] für [mm] \lambda \in [/mm] (0,1)
Wir wissen au der Vorleung auch, dass F i.A nicht strikt konvex ist, haben aber den Sonderfall k=1, den ich gerne überprüfen würde.
[mm] F(\lambda u_1 [/mm] + [mm] (1-\lambda) u_2) [/mm] = [mm] \parallel [/mm] k [mm] \ast (\lambda u_1 [/mm] + [mm] (1-\lambda) u_2 [/mm] )-f [mm] \parallel_{L^1(\Omega)} [/mm] = [mm] \parallel \lambda [/mm] (k [mm] \ast u_1)+ (1-\lambda) [/mm] (k [mm] \ast u_2 [/mm] )-f [mm] \parallel_{L^1(\Omega)} =\parallel \lambda [/mm] (k [mm] \ast u_1)+ (1-\lambda) [/mm] (k [mm] \ast u_2 [/mm] )-f [mm] +\lambda [/mm] f - [mm] \lambda [/mm] f [mm] \parallel_{L^1(\Omega)} [/mm] = [mm] \parallel \lambda [/mm] (k [mm] \ast u_1 [/mm] -f )+ [mm] (1-\lambda) [/mm] (k [mm] \ast u_2 [/mm] -f) [mm] \parallel_{L^1(\Omega)}
[/mm]
Jetzt könnte ich [mm] \le [/mm] abschätzen, aber nicht <,also ich komme nur auf Konvexität, d.h.
[mm] \le \lambda \parallel(k \ast u_1 [/mm] -f ) [mm] \parallel_{L^1(\Omega)}+ (1-\lambda)\parallel [/mm] (k [mm] \ast u_2 [/mm] -f) [mm] \parallel_{L^1(\Omega)}
[/mm]
Was ich aber noch nicht benutzt habe ist, dass k=1 ist.
[mm] F(\lambda u_1 [/mm] + [mm] (1-\lambda) u_2) [/mm] = [mm] \parallel [/mm] 1 [mm] \ast (\lambda u_1 [/mm] + [mm] (1-\lambda) u_2 [/mm] )-f [mm] \parallel_{L^1(\Omega)} [/mm] = [mm] \parallel \lambda [/mm] (1 [mm] \ast u_1 [/mm] -f )+ [mm] (1-\lambda) [/mm] (1 [mm] \ast u_2 [/mm] -f) [mm] \parallel_{L^1(\Omega)}
[/mm]
[mm] \le \lambda \parallel(1 \ast u_1 [/mm] -f ) [mm] \parallel_{L^1(\Omega)}+ (1-\lambda)\parallel [/mm] (1 [mm] \ast u_2 [/mm] -f) [mm] \parallel_{L^1(\Omega)}
[/mm]
Was aber erstmal nichts ändert, oder?
Ist das überhaupt strikt konvex oder verenne ich mich hier?
Hat jemand bitte einen Hinweis für mich?
alles an Vss & Infos aus dem Skript:
[mm] \Omega \subset \mathbb{R}^2 [/mm] offen und beschränkt,
f [mm] \in L^1(\Omega)
[/mm]
Faltungsoperator A: [mm] L^1(\Omega) \to L^1(\Omega') [/mm] u [mm] \mapsto [/mm] k [mm] \ast [/mm] u mit Faltungskern k [mm] \in L^1(\omega)
[/mm]
für [mm] \omega, \Omega' \subset \mathbb{R}^2 [/mm] geeignet
supp k = [mm] \omega
[/mm]
[mm] \Omega' [/mm] - [mm] \omega [/mm] = [mm] \{ x-z \in \mathbb{R}^2 : x \in \Omega', z \in \omega\} \subset \Omega
[/mm]
Faltung von u und k : (k [mm] \ast [/mm] u) (x) = [mm] \int_{\omega} [/mm] k(y)u(x-y)dy [mm] \forll [/mm] x [mm] \in \Omega'
[/mm]
und Au(x) = k [mm] \ast [/mm] u (x) = [mm] \int_{\omega} [/mm] k(y)u(x-y)dy
Wir haben in der VL gezeigt, dass :
-für k [mm] \L^1(\omega) [/mm] und u [mm] \in L^p (\Omega) [/mm] mit 1 [mm] \le [/mm] p [mm] \le \infty [/mm] so ist (k [mm] \ast [/mm] u) [mm] \in L^p(\Omega') [/mm] und [mm] \parallel [/mm] k [mm] \ast [/mm] u [mm] \parallel_{L^p (\Omega')}\le \parallel [/mm] k [mm] \parallel_{L^1 (\omega)} \parallel [/mm] u [mm] \parallel_{L^p (\Omega)}
[/mm]
- Faltung ist symmetrisch (k [mm] \ast [/mm] u)(x) = (u [mm] \ast [/mm] k)(x)
-Faltung it linear in u für festes k
- Der Operator A: [mm] L^1(\Omega) \to L^1(\Omega') [/mm] definiert linearen und stetigen Operator mit [mm] \parallel [/mm] A [mm] \parallel_{L(L^p,L^p)} [/mm] = [mm] \parallel [/mm] k [mm] \parallel_{L^1}
[/mm]
Vielen Dank und liebe Grüße
Noya
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 10:20 Sa 13.02.2021 | Autor: | matux |
$MATUXTEXT(ueberfaellige_frage)
|
|
|
|