matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Stochastikstochastische unabh.
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Uni-Stochastik" - stochastische unabh.
stochastische unabh. < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

stochastische unabh.: Korrektur
Status: (Frage) beantwortet Status 
Datum: 12:01 Mo 06.05.2013
Autor: piriyaie

Aufgabe
Sei [mm] (\Omega, \mathcal{A}, [/mm] P) ein Wahrscheinlichkeitsraum und A, B [mm] \in \mathcal{A} [/mm]

i. Untersuchen Sie A und B bzgl. stochastischer Unabhängigkeit für den Fall, dass B [mm] \subset [/mm] A.

ii. Untersuchen Sie A und B bzgl. stochastischer Unabhängigkeit für den Fall, dass A [mm] \cap B=\emptyset. [/mm]

Hallo,

habe für obige Aufgabe folgenden Lösungsvorschlag:

zu i.

[mm] P(A|B)=\bruch{P(A \cap B)}{P(B)}=\bruch{P(B)}{P(B)}=1 [/mm]

zu ii.

[mm] P(A|B)=\bruch{P(A \cap B)}{P(B)}=\bruch{0}{P(B)}=0 [/mm]

Also das ist jetzt das, was ich rausgefunden habe. Ist das so richtig?

Was muss ich noch machen?

Danke schonmal.

Grüße
Ali

        
Bezug
stochastische unabh.: Antwort
Status: (Antwort) fertig Status 
Datum: 12:10 Mo 06.05.2013
Autor: luis52


> Also das ist jetzt das, was ich rausgefunden habe. Ist das
> so richtig?

Leider nein, denn du laesst die Faelle $P(B)=0$ unberuecksichtigt.

>  
> Was muss ich noch machen?

  
Ueberlege dir jeweils, unter welchen Umstaenden [mm] $P(A\cap [/mm] B)=P(A)P(B)$ gilt.

vg Luis


Bezug
                
Bezug
stochastische unabh.: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:33 Mo 06.05.2013
Autor: piriyaie

Erst mal zu B [mm] \subset [/mm] A

Ok. Also meine erste Antwort gilt nur für P(B)>0

Nun zu P(B)=0

Laut Definition sind zwei Ereignisse stochastisch unabhängig, wenn gilt:

P(A|B)=P(A)*P(B)

Für denn Fall, dass P(B)=0 gilt, dass P(A|B)=0. Dies würde dann so aussehen:

[mm] P(B|A)=\bruch{P(B \cap A)}{P(A)}=\bruch{P(B)}{P(A)}=\bruch{0}{P(A)}=0 [/mm]

richtig?

Grüße
Ali

Bezug
                        
Bezug
stochastische unabh.: Antwort
Status: (Antwort) fertig Status 
Datum: 20:45 Mo 06.05.2013
Autor: luis52


>  
> Laut Definition sind zwei Ereignisse stochastisch
> unabhängig, wenn gilt:
>  
> P(A|B)=P(A)*P(B)

Das stimmt nicht, schau []hier.

Die obige Gleichung folgt, wenn $A,B_$ unabhaengig sind und wenn $P(B)>0$.

vg Luis

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]